Abstract

In lightweight space structures, incorporating power and control signal transmission cables significantly impacts the dynamics of the host structures. This study presents an experimental effort to provide proof of concept for the mathematical modeling techniques developed for the ideal cable placement to preserve the dynamic properties of host plate structures. By assuming a periodic cable wrapping pattern, the cable-harnessed structure is modeled using repeating fundamental elements. This periodicity enables the application of an energy-equivalence homogenization method, leading to partial differential equations that describe the out-of-plane vibrations of the cable-harnessed plate system. The presented test results further validate several optimal wrapping designs for host plate structures. The frequency response functions for the optimal cable pattern from the analytical model are compared against the test results, demonstrating excellent agreement.

References

1.
Robertson
,
L. M.
,
Lane
,
S. A.
,
Ingram
,
B. R.
,
Hansen
,
E. J.
,
Babuška
,
V.
,
Goodding
,
J.
,
Mimovich
,
M.
,
Mehle
,
G.
,
Coombs
,
D.
, and
Ardelean
,
E. V.
,
2007
, “
Cable Effects on the Dynamics of Large Precision Structures
,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, Apr. 23–26, p.
2389
.
2.
Babuška
,
V.
,
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2010
, “
Modeling and Experimental Validation of Space Structures With Wiring Harnesses
,”
J. Spacecraft Rockets
,
47
(
6
), pp.
1038
1052
.
3.
Ardelean
,
E. V.
,
Goodding
,
J. C.
,
Mehle
,
G.
,
Coombs
,
D. M.
,
Babuška
,
V.
,
Robertson
,
L. M.
,
Lane
,
S. A.
,
Ingram
,
B. R.
, and
Hansen
,
E. J.
,
2007
, “
Dynamics of Cable Harnesses on Large Precision Structures
,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, Apr. 23–26, p.
2388
.
4.
Goodding
,
J. C.
,
Babuška
,
V.
,
Griffith
,
D. T.
,
Ingram
,
B. R.
, and
Robertson
,
L. M.
,
2007
, “
Study of Free-Free Beam Structural Dynamics Perturbations Due to Mounted Cable Harnesses
,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, Apr. 23–26, p.
2390
.
5.
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Babuška
,
V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables
,”
J. Spacecraft Rockets
,
48
(
6
), pp.
942
957
.
6.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “
Cable Modeling and Internal Damping Developments
,”
ASME Appl. Mech. Rev.
,
65
(
1
), p.
010801
.
7.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “Comparison of Damping Models for Space Flight Cables,”
Topics in Dynamics of Civil Structures
, Vol.
4
,
F.
Catbas
,
S.
Pakzad
,
V.
Racic
,
A.
Pavic
,
P.
Reynolds
, eds.,
Springer
,
New York, NY
, pp.
183
194
.
8.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2013
, “
Toward Modeling of Cable-Harnessed Structures: Cable Damping Experiments
,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, Apr. 8–11, p.
1889
.
9.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Parameters for Modeling Stranded Cables as Structural Beams
,”
Exp. Mech.
,
54
(
9
), pp.
1613
1626
.
10.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2015
, “
Modeling Vibration Response and Damping of Cables and Cabled Structures
,”
J. Sound Vib.
,
336
, pp.
240
256
.
11.
Lesieutre
,
G. A.
,
2010
, “
Frequency-Independent Modal Damping for Flexural Structures Via a Viscous Geometric Damping Model
,”
J. Guid. Control Dyn.
,
33
(
6
), pp.
1931
1935
.
12.
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2013
, “
Geometric Viscous Damping Model for Nearly Constant Beam Modal Damping
,”
AIAA J.
,
51
(
7
), pp.
1688
1694
.
13.
Kauffman
,
J. L.
,
Lesieutre
,
G. A.
, and
Babuška
,
V.
,
2014
, “
Damping Models for Shear Beams With Applications to Spacecraft Wiring Harnesses
,”
J. Spacecraft Rockets
,
51
(
1
), pp.
16
22
.
14.
Kauffman
,
J. L.
, and
Lesieutre
,
G. A.
,
2013
, “
Damping Models for Timoshenko Beams With Applications to Spacecraft Wiring Harnesses
,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, Apr. 8–11, p.
1890
.
15.
McPherson
,
B. N.
,
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2018
, “
Investigation of Viscous Damping Terms for a Timoshenko Beam
,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, Jan. 8–12, p.
0456
.
16.
Choi
,
J.
, and
Inman
,
D. J.
,
2014
, “
Spectrally Formulated Modeling of a Cable-Harnessed Structure
,”
J. Sound Vib.
,
333
(
14
), pp.
3286
3304
.
17.
Choi
,
J.
, and
Inman
,
D. J.
,
2013
, “
Development of Modeling for Cable Harnessed Structures
,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, Apr. 8–11, p.
1888
.
18.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Cable-Harnessed Space Structures: A Beam-Cable Approach
,” Proceedings of the 24th International Association of Science and Technology for Development International Conference on Modelling and Simulation, Banff, Alberta, Canada, July 17–19, pp.
280
284
.
19.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Vibration Analysis of String-Harnessed Beam Structures: A Homogenization Approach
,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA, Apr. 8–11, p.
1892
.
20.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Dynamic Modelling of Cable-Harnessed Beam Structures With Periodic Wrapping Patterns: A Homogenization Approach
,”
Int. J. Model. Simul.
,
33
(
4
), pp.
185
202
.
21.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Mass and Stiffness Effects of Harnessing Cables on Structural Dynamics: Continuum Modeling
,”
AIAA J.
,
54
(
9
), pp.
2881
2904
.
22.
Martin
,
B.
, and
Salehian
,
A.
,
2014
, “
Vibration Modelling of String-Harnessed Beam Structures Using Homogenization Techniques
,” ASME 2014 International Mechanical Engineering Congress and Exposition (IMECE), Montreal, Quebec, Canada, Nov. 14–20, p.
37039
.
23.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Homogenization Modeling of Periodically Wrapped String-Harnessed Beam Structures: Experimental Validation
,”
AIAA J.
,
54
(
12
), pp.
3965
3980
.
24.
Martin
,
B.
, and
Salehian
,
A.
,
2019
, “
Continuum Modeling of Nonperiodic String-Harnessed Structures: Perturbation Theory and Experiments
,”
AIAA J.
,
57
(
4
), pp.
1736
1751
.
25.
Martin
,
B.
, and
Salehian
,
A.
,
2018
, “
Reference Value Selection in a Perturbation Theory Applied to Nonuniform Beams
,”
Shock Vib.
,
2018
, p.
4627865
.
26.
Martin
,
B.
, and
Salehian
,
A.
,
2020
, “
Techniques for Approximating a Spatially Varying Euler-Bernoulli Model With a Constant Coefficient Model
,”
Appl. Math. Model.
,
79
, pp.
260
283
.
27.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Analytical Modeling
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021001
.
28.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
024502
.
29.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2017
, “
Coupled Axial, In Plane and Out of Plane Bending Vibrations of Cable Harnessed Space Structures
,” International Conference on Applied Mathematics, Modeling and Computational Science, Waterloo, Ontario, Canada, Aug. 20–25, pp.
249
257
.
30.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Analytical Study of Coupling Effects for Vibrations of Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031001
.
31.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2018
, “
Coupled Bending, Torsion and Axial Vibrations of a Cable-Harnessed Beam With Periodic Wrapping Pattern
,” ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Quebec City, Quebec, Canada, Aug. 26–29, p.
86078
.
32.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Coupled Dynamics of Cable-Harnessed Structures: Experimental Validation
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061001
.
33.
Yerrapragada
,
K.
,
Agrawal
,
P.
, and
Salehian
,
A.
,
2022
, “
Multidimensional Vibrations of Cable-Harnessed Beam Structures With Periodic Pattern: Modeling and Experiment
,”
Shock Vib.
,
2022
, p.
7343582
.
34.
Yerrapragada
,
K.
,
Martin
,
B.
,
Agrawal
,
P.
, and
Salehian
,
A.
,
2022
, “
Fully Coupled Vibrations of Cable-Harnessed Beams With a Non-Periodic Wrapping Pattern
,”
Vibration
,
5
(
2
), pp.
238
263
.
35.
Cao
,
S.
,
Agrawal
,
P.
,
Qi
,
N.
, and
Salehian
,
A.
,
2021
, “
Optimal Geometry for Cable Wrapping to Minimize Dynamic Impacts on Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041005
.
36.
Agrawal
,
P.
, and
Salehian
,
A.
,
2019
, “
Vibration Analysis of Cable-Harnessed Plate Structures
,” Proceedings of the 26th International Congress on Sound and Vibration (ICSV26), Montreal, Quebec, Canada, July 7–11, pp.
2671
2678
.
37.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Continuum Modeling and Vibration Analysis of Cable-Harnessed Plate Structures of Periodic Patterns
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061007
.
38.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Vibrations Analysis of Cable-Harnessed Plates: Continuum Modeling and Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
5
), p.
051004
.
39.
Agrawal
,
P.
, and
Salehian
,
A.
,
2022
, “
Dynamic Analysis and Experimental Validation of Periodically Wrapped Cable-Harnessed Plate Structures
,”
Exp. Mech.
,
62
(
6
), pp.
909
927
.
40.
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Babuška
,
V.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel
,”
J. Spacecraft Rockets
,
48
(
6
), pp.
958
973
.
41.
Remedia
,
M.
,
Aglietti
,
G. S.
, and
Richardson
,
G.
,
2015
, “
Modelling the Effect of Electrical Harness on Microvibration Response of Structures
,”
Acta Astronaut.
,
109
, pp.
88
102
.
42.
Oluyemi
,
M.
,
Agrawal
,
P.
,
Shendy
,
M.
, and
Salehian
,
A.
,
2025
, “
Optimizing Cable Wrapping Patterns to Neutralize Dynamic Impacts on Host Plate Structures for Space Applications
,”
ASME J. Vib. Acoust.
,
147
(
1
), p.
011005
.
43.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill, Inc.
,
New York
.
44.
Young
,
D.
,
1950
, “
Vibration of Rectangular Plates by the Ritz Method
,”
ASME J. Appl. Mech.
,
17
(
4
), pp.
448
453
.
You do not currently have access to this content.