Abstract

This work focuses on the numerical computations of the second-order time-averaged acoustic radiation force on solid particles with complex geometries based on the perturbation theory and linear scattering approximation. The acoustic field scattered by arbitrarily shaped particles immersed in inviscid fluid is computed using the finite-difference time-domain method with a fourth-order dispersion-relation-preserving scheme, which serves as the basis for radiation force calculation. The infinite fluid domain is truncated into a finite computational domain by defining perfectly matched layers at computational boundaries. A meticulous immersed boundary method is developed to represent the interface between an irregularly shaped solid and the Cartesian computational grid, improving the precision of the computed acoustic radiation force. Based on the proposed method, the acoustic radiation force acting on a rigid elliptical cylinder exerted by planar standing acoustic waves is computed first, and the accuracy of the computed results is verified by comparing them with reference solutions obtained using the finite element method. Additionally, the dependences of the computational precision of the acoustic radiation force on some key parameters are assessed, and the criteria for determining the parameter values are developed to avoid the excessive constraint phenomenon which may occur in the numerical results. Finally, numerical examples of computing the acoustic radiation force on solid particles with complex geometries are implemented to check the effectiveness of the proposed numerical method.

References

1.
Baudoin
,
M.
, and
Thomas
,
J. L.
,
2020
, “
Acoustic Tweezers for Particle and Fluid Micromanipulation
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
205
234
.
2.
Ozcelik
,
A.
,
Rufo
,
J.
,
Guo
,
F.
,
Gu
,
Y.
,
Li
,
P.
,
Lata
,
J.
, and
Huang
,
T. J.
,
2018
, “
Acoustic Tweezers for the Life Sciences
,”
Nat. Methods
,
15
(
12
), pp.
1021
1028
.
3.
Friend
,
J.
, and
Yeo
,
L. Y.
,
2011
, “
Microscale Acoustofluidics: Microfluidics Driven Via Acoustics and Ultrasonics
,”
Rev. Mod. Phys.
,
83
(
2
), pp.
647
704
.
4.
King
,
L. V.
,
1934
, “
On the Acoustic Radiation Pressure on Spheres
,”
Proc. R. Soc. A
,
147
(
861
), pp.
212
240
.
5.
Yosioka
,
K.
, and
Kawasima
,
Y.
,
1955
, “
Acoustic Radiation Pressure on a Compressible Sphere
,”
Acta Acust. Acust.
,
5
, pp.
167
173
.
6.
Hasegawa
,
T.
, and
Yosioka
,
K.
,
1969
, “
Acoustic-Radiation Force on a Solid Elastic Sphere
,”
J. Acoust. Soc. Am.
,
46
(
5B
), pp.
1139
1143
.
7.
Gor’kov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Sov. Phys. Dokl.
,
6
, pp.
773
775
.
8.
Bruus
,
H.
,
2012
, “
Acoustofluidics 7: The Acoustic Radiation Force on Small Particles
,”
Lab Chip
,
12
(
6
), pp.
1014
1021
.
9.
Wei
,
W.
,
Thiessen
,
D. B.
, and
Marston
,
P. L.
,
2004
, “
Acoustic Radiation Force on a Compressible Cylinder in a Standing Wave
,”
J. Acoust. Soc. Am.
,
116
(
1
), pp.
201
208
.
10.
Haydock
,
D.
,
2005
, “
Calculation of the Radiation Force on a Cylinder in a Standing Wave Acoustic Field
,”
J. Phys. A: Math. Gen.
,
38
(
15
), pp.
3279
3285
.
11.
Wang
,
J.
, and
Dual
,
J.
,
2009
, “
Numerical Simulations for the Time-Averaged Acoustic Forces Acting on Rigid Cylinders in Ideal and Viscous Fluids
,”
J. Phys. A: Math. Theor.
,
42
(
28
), p.
285502
.
12.
Haydock
,
D.
,
2005
, “
Lattice Boltzmann Simulations of the Time-Averaged Forces on a Cylinder in a Sound Field
,”
J. Phys. A: Math. Gen.
,
38
(
15
), pp.
3265
3277
.
13.
Grinenko
,
A.
,
Wilcox
,
P. D.
,
Courtney
,
C. R. P.
, and
Drinkwater
,
B. W.
,
2012
, “
Acoustic Radiation Force Analysis Using Finite Difference Time Domain Method
,”
J. Acoust. Soc. Am.
,
131
(
5
), pp.
3664
3670
.
14.
Glynne-Jones
,
P.
,
Mishra
,
P. P.
,
Boltryk
,
R. J.
, and
Hill
,
M.
,
2013
, “
Efficient Finite Element Modeling of Radiation Forces on Elastic Particles of Arbitrary Size and Geometry
,”
J. Acoust. Soc. Am.
,
133
(
4
), pp.
1885
1893
.
15.
Malekabadi
,
F.
,
Caldag
,
H. O.
, and
Yesilyurt
,
S.
,
2023
, “
Acoustic Radiation Forces and Torques on Elastic Micro Rings in Standing Waves
,”
J. Fluids Struct.
,
118
, p.
103841
.
16.
Cai
,
F.
,
Meng
,
L.
,
Jiang
,
C.
,
Pan
,
Y.
, and
Zheng
,
H.
,
2010
, “
Computation of the Acoustic Radiation Force Using the Finite-Difference Time-Domain Method
,”
J. Acoust. Soc. Am.
,
128
(
4
), pp.
1617
1622
.
17.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J. P.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interaction
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
1–3
), pp.
689
723
.
18.
Slone
,
A. K.
,
Pericleous
,
K.
,
Bailey
,
C.
, and
Cross
,
M.
,
2002
, “
Dynamic Fluid–Structure Interaction Using Finite Volume Unstructured Mesh Procedures
,”
Comput. Struct.
,
80
(
5–6
), pp.
371
390
.
19.
Sotiropoulos
,
F.
, and
Yang
,
X.
,
2014
, “
Immersed Boundary Methods for Simulating Fluid–Structure Interaction
,”
Prog. Aerosp. Sci.
,
65
, pp.
1
21
.
20.
Verzicco
,
R.
,
2023
, “
Immersed Boundary Methods: Historical Perspective and Future Outlook
,”
Annu. Rev. Fluid Mech.
,
55
(
1
), pp.
129
155
.
21.
Sun
,
X.
,
Jiang
,
Y.
,
Liang
,
A.
, and
Jing
,
X.
,
2012
, “
An Immersed Boundary Computational Model for Acoustic Scattering Problems With Complex Geometries
,”
J. Acoust. Soc. Am.
,
132
(
5
), pp.
3190
3199
.
22.
Zhao
,
C.
,
Zhang
,
T.
, and
Hou
,
G. X.
,
2022
, “
Finite-Difference Time-Domain Modeling for Underwater Acoustic Scattering Applications Based on Immersed Boundary Method
,”
Appl. Acoust.
,
193
, p.
108764
.
23.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries
,”
J. Comput. Phys.
,
230
(
4
), pp.
1000
1019
.
24.
Qu
,
Y.
,
Shi
,
R.
, and
Batra
,
R. C.
,
2018
, “
An Immersed Boundary Formulation for Simulating High-Speed Compressible Viscous Flows With Moving Solids
,”
J. Comput. Phys.
,
354
, pp.
672
691
.
25.
Xie
,
F.
,
Qu
,
Y.
,
Islam
,
M. A.
, and
Meng
,
G.
,
2020
, “
A Sharp-Interface Cartesian Grid Method for Time-Domain Acoustic Scattering From Complex Geometries
,”
Comput. Fluids
,
202
, p.
104498
.
26.
He
,
Y.
,
Zhang
,
X.
,
Chen
,
T.
,
Li
,
Y.
,
Deng
,
T.
, and
He
,
Y.
,
2024
, “
An Immersed Boundary Method for Modeling Fluid–Solid–Acoustic Interactions Involving Dynamic Structures
,”
Phys. Fluids
,
36
(
9
), p.
09613
.
27.
Xie
,
F.
,
Qu
,
Y.
, and
Meng
,
G.
,
2022
, “
Finite-Amplitude Acoustic Responses of Large-Amplitude Vibration Objects With Complex Geometries in an Infinite Fluid
,”
J. Acoust. Soc. Am.
,
151
(
1
), pp.
529
543
.
28.
Tam
,
C. K. W.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.
29.
Berland
,
J.
,
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
,
2007
, “
High-Order, Low Dispersive and Low Dissipative Explicit Schemes for Multiple-Scale and Boundary Problems
,”
J. Comput. Phys.
,
224
(
2
), pp.
637
662
.
30.
Kempe
,
T.
,
Lennartz
,
M.
,
Schwarz
,
S.
, and
Fröhlich
,
J.
,
2015
, “
Imposing the Free-Slip Condition With a Continuous Forcing Immersed Boundary Method
,”
J. Comput. Phys.
,
282
, pp.
183
209
.
31.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow–Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.
32.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
33.
Hu
,
F. Q.
,
2001
, “
A Stable, Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables
,”
J. Comput. Phys.
,
173
(
2
), pp.
455
480
.
34.
Marston
,
P. L.
,
Wei
,
W.
, and
Thiessen
,
D. B.
,
2006
, “
Acoustic Radiation Force on Elliptical Cylinders and Spheroidal Objects in Low Frequency Standing Waves
,”
AlP Conf. Proc.
,
838
, pp.
495
499
.
You do not currently have access to this content.