Abstract

In the realm of lightweight space structures, the interplay between power and control signal transmission cables and their host structures introduces intriguing dynamics. The presented article aims to investigate optimal geometries for cable placement on plate structures while preserving the dynamic characteristics of the host structure. The cable wrapping is assumed to be periodic such that the cable-harnessed structure consists of several repeating fundamental elements. The periodicity condition allows for the application of an energy-equivalence homogenization approach to develop an analytical model resulting in partial differential equations for the vibrations of the cable-harnessed plate system. An optimization strategy is developed to rank various cable patterns for several host plate structures to obtain the best match for their frequency response functions compared to the bare plate when no cables are attached. Subsequently, a detailed analysis to investigate the impacts of several wrapping parameters on the system’s dynamics is carried out. Lastly, the frequency response functions for the optimal pattern from the analytical solution are validated against those from the finite element model and have shown to be in excellent agreement.

References

1.
Robertson
,
L. M.
,
Lane
,
S. A.
,
Ingram
,
B. R.
,
Hansen
,
E. J.
,
Babuška
,
V.
,
Goodding
,
J.
,
Mimovich
,
M.
,
Mehle
,
G.
,
Coombs
,
D.
, and
Ardelean
,
E. V.
,
2007
, “
Cable Effects on the Dynamics of Large Precision Structures
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
2389
.
2.
Babuška
,
V.
,
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2010
, “
Modeling and Experimental Validation of Space Structures With Wiring Harnesses
,”
J. Spacecr. Rockets
,
47
(
6
), pp.
1038
1052
. .
3.
Ardelean
,
E. V.
,
Goodding
,
J. C.
,
Mehle
,
G.
,
Coombs
,
D. M.
,
Babuška
,
V.
,
Robertson
,
L. M.
,
Lane
,
S. A.
,
Ingram
,
B. R.
, and
Hansen
,
E. J.
,
2007
, “
Dynamics of Cable Harnesses on Large Precision Structures
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
2388
.
4.
Goodding
,
J. C.
,
Babuška
,
V.
,
Griffith
,
D. T.
,
Ingram
,
B. R.
, and
Robertson
,
L. M.
,
2007
, “
Study of Free-Free Beam Structural Dynamics Perturbations Due to Mounted Cable Harnesses
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
2390
.
5.
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Babuška
,
V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
942
957
.
6.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “
Cable Modeling and Internal Damping Developments
,”
Appl. Mech. Rev.
,
65
(
1
), p.
010801
.
7.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “Comparison of Damping Models for Space Flight Cables,”
Topics in Dynamics of Civil Structures
, Vol.
4
,
F.
Catbas
,
S.
Pakzad
,
V.
Racic
,
A.
Pavic
, and
P.
Reynolds
, eds.,
Springer
,
New York
, pp.
183
194
, ch. 21.
8.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2013
, “
Toward Modeling of Cable-Harnessed Structures: Cable Damping Experiments
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, p.
1889
.
9.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Parameters for Modeling Stranded Cables as Structural Beams
,”
Exp. Mech.
,
54
(
9
), pp.
1613
1626
.
10.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2015
, “
Modeling Vibration Response and Damping of Cables and Cabled Structures
,”
J. Sound Vib.
,
336
, pp.
240
256
.
11.
Lesieutre
,
G. A.
,
2010
, “
Frequency-Independent Modal Damping for Flexural Structures Via a Viscous “Geometric” Damping Model
,”
J. Guid. Control Dynam.
,
33
(
6
), pp.
1931
1935
.
12.
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2013
, “
“Geometric” Viscous Damping Model for Nearly Constant Beam Modal Damping
,”
AIAA J.
,
51
(
7
), pp.
1688
1694
.
13.
Kauffman
,
J. L.
,
Lesieutre
,
G. A.
, and
Babuška
,
V.
,
2014
, “
Damping Models for Shear Beams With Applications to Spacecraft Wiring Harnesses
,”
J. Spacecr. Rockets
,
51
(
1
), pp.
16
22
.
14.
Kauffman
,
J. L.
, and
Lesieutre
,
G. A.
,
2013
, “
Damping Models for Timoshenko Beams With Applications to Spacecraft Wiring Harnesses
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, p.
1890
.
15.
McPherson
,
B. N.
,
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2018
, “
Investigation of Viscous Damping Terms for a Timoshenko Beam
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
0456
.
16.
Choi
,
J.
, and
Inman
,
D. J.
,
2014
, “
Spectrally Formulated Modeling of a Cable-Harnessed Structure
,”
J. Sound Vib.
,
333
(
14
), pp.
3286
3304
.
17.
Choi
,
J.
, and
Inman
,
D. J.
,
2013
, “
Development of Modeling for Cable Harnessed Structures
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, p.
1888
.
18.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Cable-Harnessed Space Structures: A Beam-Cable Approach
,”
Proceedings of the 24th International Association of Science and Technology for Development International Conference on Modelling and Simulation
,
Banff, Alberta, Canada
,
July 17–19
, pp.
280
284
.
19.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Vibration Analysis of String-Harnessed Beam Structures: A Homogenization Approach
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, p.
1892
.
20.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Dynamic Modelling of Cable-Harnessed Beam Structures With Periodic Wrapping Patterns: A Homogenization Approach
,”
Int. J. Model. Simul.
,
33
(
4
), pp.
185
202
.
21.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Mass and Stiffness Effects of Harnessing Cables on Structural Dynamics: Continuum Modeling
,”
AIAA J.
,
54
(
9
), pp.
2881
2904
.
22.
Martin
,
B.
, and
Salehian
,
A.
,
2014
, “
Vibration Modelling of String-Harnessed Beam Structures Using Homogenization Techniques
,”
ASME 2014 International Mechanical Engineering Congress and Exposition (IMECE)
,
Montreal, Quebec, Canada
,
Nov. 14–20
, p.
37039
.
23.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Homogenization Modeling of Periodically Wrapped String-Harnessed Beam Structures: Experimental Validation
,”
AIAA J.
,
54
(
12
), pp.
3965
3980
.
24.
Martin
,
B.
, and
Salehian
,
A.
,
2019
, “
Continuum Modeling of Nonperiodic String-Harnessed Structures: Perturbation Theory and Experiments
,”
AIAA J.
,
57
(
4
), pp.
1736
1751
.
25.
Martin
,
B.
, and
Salehian
,
A.
,
2018
, “
Reference Value Selection in a Perturbation Theory Applied to Nonuniform Beams
,”
Shock Vib.
,
2018
.
26.
Martin
,
B.
, and
Salehian
,
A.
,
2020
, “
Techniques for Approximating a Spatially Varying Euler-Bernoulli Model With a Constant Coefficient Model
,”
Appl. Math. Model.
,
79
, pp.
260
283
.
27.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Analytical Modeling
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021001
.
28.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
024502
.
29.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2017
, “
Coupled Axial, in Plane and Out of Plane Bending Vibrations of Cable Harnessed Space Structures
,”
International Conference on Applied Mathematics, Modeling and Computational Science
,
Waterloo, Ontario, Canada
,
Aug. 20–25
, pp.
249
257
.
30.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Analytical Study of Coupling Effects for Vibrations of Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031001
.
31.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2018
, “
Coupled Bending, Torsion and Axial Vibrations of a Cable-Harnessed Beam With Periodic Wrapping Pattern
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p.
86078
.
32.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Coupled Dynamics of Cable-Harnessed Structures: Experimental Validation
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061001
.
33.
Yerrapragada
,
K.
,
Agrawal
,
P.
, and
Salehian
,
A.
,
2022
, “
Multidimensional Vibrations of Cable-Harnessed Beam Structures With Periodic Pattern: Modeling and Experiment
,”
Shock Vib.
,
2022
.
34.
Yerrapragada
,
K.
,
Martin
,
B.
,
Agrawal
,
P.
, and
Salehian
,
A.
,
2022
, “
Fully Coupled Vibrations of Cable-Harnessed Beams With a Non-Periodic Wrapping Pattern
,”
Vibration
,
5
(
2
), pp.
238
263
.
35.
Cao
,
S.
,
Agrawal
,
P.
,
Qi
,
N.
, and
Salehian
,
A.
,
2021
, “
Optimal Geometry for Cable Wrapping to Minimize Dynamic Impacts on Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041005
.
36.
Agrawal
,
P.
, and
Salehian
,
A.
,
2019
, “
Vibration Analysis of Cable-Harnessed Plate Structures
,”
Proceedings of the 26th International Congress on Sound and Vibration (ICSV26)
,
Montreal, Quebec, Canada
,
July 7–11
, pp.
2671
2678
.
37.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Continuum Modeling and Vibration Analysis of Cable-Harnessed Plate Structures of Periodic Patterns
,”
ASME J. Vib. Acoust.
,
143
(
6
), p.
061007
.
38.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Vibrations Analysis of Cable-Harnessed Plates: Continuum Modeling and Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
5
), p.
051004
.
39.
Agrawal
,
P.
, and
Salehian
,
A.
,
2022
, “
Dynamic Analysis and Experimental Validation of Periodically Wrapped Cable-Harnessed Plate Structures
,”
Exp. Mech.
,
62
(
6
), pp.
909
927
.
40.
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Babuška
,
V.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
958
973
.
41.
Remedia
,
M.
,
Aglietti
,
G. S.
, and
Richardson
,
G.
,
2015
, “
Modelling the Effect of Electrical Harness on Microvibration Response of Structures
,”
Acta Astronaut.
,
109
, pp.
88
102
.
42.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
43.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill, Inc
,
New York
.
44.
Young
,
D.
,
1950
, “
Vibration of Rectangular Plates by the Ritz Method
,”
J. Appl. Mech.
,
17
(
4
), pp.
448
453
.
You do not currently have access to this content.