Abstract

The present study deals with the response of a forced Mathieu equation with damping, with weak harmonic direct excitation at the same frequency as the parametric excitation. A second-order perturbation analysis using the method of multiple scales unfolds parametric amplification at primary resonance. The parametric effect on the primary resonance behavior occurs with a slow time scale of second-order, although the effect on the steady-state response is of order 1. As the parametric excitation level increases, the response at primary resonance stretches before becoming unbounded and unstable. Analytical expressions for predicting the response amplitudes are presented and compared with numerical results for a specific set of system parameters. Dependence of the amplification behavior, and indeed possible deamplification, on parameters is examined. The effect of parametric excitation on the response phase behavior is also presented.

References

1.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2011
, “
In-Plane Nonlinear Dynamics of Wind Turbine Blades
,”
ASME International Design Engineering Technical Conferences, 23th Biennial Conference on Vibration and Noise
,
Washington, DC
,
Aug. 28–31
, Paper No. DETC2011–48219.
2.
Allen
,
M. S.
,
Sracic
,
M. W.
,
Chauhan
,
S.
, and
Hansen
,
M. H.
,
2011
, “
Output-Only Modal Analysis of Linear Time-Periodic Systems With Application to Wind Turbine Simulation Data
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1174
1191
.
3.
Ramakrishnan
,
V.
,
2017
, “
Analysis of Wind Turbine Blade Vibration and Drivetrain Loads
,” Ph.D. thesis,
Michigan State University
,
East Lansing
.
4.
Acar
,
G.
, and
Feeny
,
B. F.
,
2018
, “
Bend-Bend-Twist Vibrations of a Wind Turbine Blade
,”
Wind Energy
,
21
(
1
), pp.
15
28
.
5.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out-of-Plane Vibration of the Elastic Blade)
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031009
.
6.
Ikeda
,
T.
,
Harata
,
Y.
, and
Ishida
,
Y.
,
2018
, “
Parametric Instability and Localization of Vibrations in Three-Blade Wind Turbines
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071001
.
7.
Acar
,
G. D.
,
Acar
,
M. A.
, and
Feeny
,
B. F.
,
2020
, “
Parametric Resonances of a Three-Blade-Rotor System With Reference to Wind Turbines
,”
ASME J. Vib. Acoust.
,
142
(
2
), p.
021013
.
8.
Rugar
,
D.
, and
Grutter
,
P.
,
1991
, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
,
67
(
6
), pp.
699
702
.
9.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
DeMartini
,
B. E.
, and
Zhang
,
W.
,
2006
, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
,
296
(
4–5
), pp.
797
829
.
10.
Rhoads
,
J. F.
, and
Shaw
,
S. W.
,
2010
, “
The Impact of Nonlinearity on Degenerate Parametric Amplifiers
,”
Appl. Phys. Lett.
,
96
(
23
), p.
234101
.
11.
Mohamad
,
M. A.
, and
Sapsis
,
T.
,
2016
, “
Probabilistic Response and Rare Events in Mathieu’s Equation Under Correlated Parametric Excitation
,”
Ocean Eng.
,
120
, pp.
289
297
.
12.
McLachlan
,
N.
,
1964
,
Theory and Application of Mathieu Functions
,
Dover Publications
,
New York
.
13.
14.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley Interscience Publications. John Wiley and Sons
,
New York
.
15.
Susskind
,
H. J.
,
1991
, “
A Stability Analysis of the Mathieu Equation With Order-One Damping
,” Master’s thesis,
Cornell University
,
Ithaca, NY
.
16.
Acar
,
G.
, and
Feeny
,
B. F.
,
2016
, “
Floquet-Based Analysis of General Responses of the Mathieu Equation
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041017
.
17.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Resonances of the Forced Mathieu Equation With Reference to Wind Turbine Blades
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
064501
.
18.
Sharma
,
A.
,
2020
, “
A Re-Examination of Various Resonances in Parametrically Excited Systems
,”
ASME J. Vib. Acoust.
,
142
(
3
), p.
031010
.
19.
Belhaq
,
M.
, and
Houssni
,
M.
,
1999
, “
Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations
,”
Nonlinear Dyn.
,
18
(
1
), pp.
1
24
.
20.
Pandey
,
M.
,
Rand
,
R.
, and
Zehnder
,
A. T.
,
2007
, “
Frequency Locking in a Forced Mathieu-van der Pol-Duffing System
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
3
12
.
21.
Newman
,
W. I.
,
Rand
,
R.
, and
Newman
,
A. L.
,
1999
, “
Dynamics of a Nonlinear Parametrically Excited Partial Differential Equation
,”
Chaos
,
9
(
1
), pp.
242
253
.
22.
Ng
,
L.
, and
Rand
,
R.
,
2002
, “
Bifurcations in a Mathieu Equation With Cubic Nonlinearities
,”
Chaos Solitions Fractals
,
14
(
2
), pp.
173
181
.
23.
Marghitu
,
D. B.
,
Sinha
,
S. C.
, and
Boghiu
,
D.
,
1998
, “
Stability and Control of a Parametrically Excited Rotating System. Part 1: Stability Analysis
,”
Dyn. Control
,
8
(
1
), pp.
7
20
.
24.
Tondl
,
A.
, and
Ecker
,
H.
,
2003
, “
On the Problem of Self-Excited Vibration Quenching by Means of Parametric Excitation
,”
Appl. Mech.
,
72
(
11–12
), pp.
923
932
.
25.
Carr
,
D. W.
,
Evoy
,
S.
,
Sekaric
,
L.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
,
2000
, “
Parametric Amplification in a Torsional Microresonator
,”
Appl. Phys. Lett.
,
7
(
10
), pp.
1545
1547
.
26.
Rhoads
,
J.
,
Miller
,
N.
,
Shaw
,
S.
, and
Feeny
,
B.
,
2008
, “
Mechanical Domain Parametric Amplification
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061006
.
27.
Dana
,
A.
,
Ho
,
F.
, and
Yamamoto
,
Y.
,
1998
, “
Mechanical Parametric Amplification in Piezoresistive Gallium Arsenide Microcantilevers
,”
Appl. Phys. Lett.
,
72
(
10
), pp.
1152
1154
.
28.
Zalalutdinov
,
M.
,
Olkhovets
,
A.
,
Zehnder
,
A.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
,
2001
, “
Optically Pumped Parametric Amplification for Micromechanical Oscillators
,”
Appl. Phys. Lett.
,
78
(
20
), pp.
3142
3144
.
29.
Ouisse
,
T.
,
Stark
,
M.
,
Rodrigues-Martins
,
F.
,
Bercu
,
B.
,
Huant
,
S.
, and
Chevrier
,
J.
,
2005
, “
Theory of Electric Force Microscopy in the Parametric Amplification Regime
,”
Phys. Rev. B
,
71
(
20
), p.
205404
.
30.
Ono
,
T.
,
Wakamatsu
,
H.
, and
Esashi
,
M.
,
2005
, “
Parametrically Amplified Thermal Resonant Sensor With Pseudo-Cooling Effect
,”
J. Micromech. Microeng.
,
15
(
12
), pp.
2282
2288
.
31.
Raskin
,
J.-P.
,
Brown
,
A. R.
,
Khuri-Yakub
,
B. T.
, and
Rebeiz
,
G. M.
,
2000
, “
A Novel Parametric-Effect MEMS Amplifier
,”
J. Microelectromech. Syst.
,
9
(
4
), pp.
528
537
.
32.
Baskaran
,
R.
, and
Turner
,
K. L.
,
2003
, “
Mechanical Domain Coupled Mode Parametric Resonance and Amplification in a Torsional Mode Micro Electro Mechanical Oscillator
,”
J. Micromech. Microeng.
,
13
(
5
), pp.
701
707
.
33.
Wallin
,
C. B.
,
De Alba
,
R.
,
Westy
,
D.
,
Holland
,
G.
,
Grutzik
,
S.
,
Rand
,
R. H.
,
Zehnder
,
A. T.
,
Aksyuk
,
V. A.
,
Krylov
,
S.
, and
Ilic
,
B. R.
,
2018
, “
Nondegenerate Parametric Resonance in Large Ensembles of Coupled Micromechanical Cantilevers With Varying Natural Frequencies
,”
Phys. Rev. Lett.
,
121
(
26
), p.
264301
.
34.
Holmes
,
M. H.
,
1995
,
Introduction to Perturbation Methods
,
Springer-Verlag
,
New York
.
35.
Murdock
,
J. A.
,
1991
,
Perturbations: Theory and Methods
,
A Wiley-Interscience Publication
,
New York
.
36.
Nayfeh
,
A. H.
,
1986
, “Perturbation Methods in Nonlinear Dynamics” (
Lecture Notes in Physics
), Vol.
247
, M. Jowett, M. Month, and S. Turner, eds.,
Springer-Verlag
,
Berlin
, pp.
238
314
.
37.
Sayed
,
M.
, and
Hamed
,
Y. S.
,
2011
, “
Stability and Response of a Nonlinear Coupled Pitch-Roll Shi Model Under Parametric and Harmonic Exitations
,”
Nonlinear Dyn.
,
64
(
3
), pp.
207
220
.
38.
Romero
,
L. A.
,
Torczynski
,
J. R.
, and
Kraynik
,
A. M.
,
2011
, “
A Scaling Law Near the Primary Resonance of the Quasiperiodic Mathieu Equation
,”
Nonlinear Dyn.
,
64
(
4
), pp.
395
408
.
39.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2012
, “
Second-Order Multiple-Scales Analysis of the Nonlinear Forced Mathieu Equation
,”
ASME International Design Engineering Technical Conferences, 24th Conference on Vibration and Noise
, Chicago, Paper No. DETC2012-71532.
You do not currently have access to this content.