Vibration absorbers are efficient and robust tools for reducing vibration and noise. Researchers use various alternative approaches and validate their methods with examples consisting of mass-spring-damper systems. Focusing on the minimization of the vibration amplitudes via passive absorber approach, a new and efficient method for calculating the optimum parameters of N absorbers attached to a uniform beam with M mode shapes (where N and M are any positive integers) has been developed. First, for the most general case, dissipation due to damping, kinetic, and potential energy and the effects of external forces are analyzed. The Lagrange's equation is used to provide the state space representation of the system. State space representation of a system with N absorbers and M mode shapes is composed. On the basis of the state space representation and the Lyapunov function, the H2 norm of the transfer function of the system is utilized in the newly developed optimization package. The system output is minimized by the optimization algorithm and displayed with a comparison between cases without an absorber and with randomly selected absorber parameters. As a conclusion, with the help of this method for calculation of optimal absorber parameters, one can easily design a mechanical system according to design criteria.

References

1.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
,
1928
, “
The Theory of the Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
, pp.
9
22
.
2.
Ozturk
,
L.
,
1997
, “
Vibration Absorbers as Controllers
,” M.S. thesis, Bogazici University, Istanbul, Turkey.
3.
Wang
,
B. P.
,
Kitis
,
L.
,
Pilkey
,
D.
, and
Palazzolo
,
A.
,
1985
, “
Synthesis of Dynamic Vibration Absorbers
,”
ASME J. Vib. Acoust., Stress, Reliab. Des.
,
107
, pp.
161
166
.10.1115/1.3269239
4.
Herzog
,
R.
,
1994
, “
Active Versus Passive Vibration Absorbers
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
367
371
.10.1115/1.2899231
5.
Jacquot
,
R. G.
,
1978
, “
Optimal Dynamic Vibration Absorbers for General Beam Systems
,”
J. Sound Vib.
,
60
, pp.
535
542
.10.1016/S0022-460X(78)80090-X
6.
Thompson
,
D. J.
,
2008
, “
A Continuous Damped Vibration Absorber to Reduce Broad-Band Wave Propagation in Beams
,”
J. Sound Vib.
,
311
, pp.
824
842
.10.1016/j.jsv.2007.09.038
7.
Jacquot
,
R. G.
,
2001
, “
Suppression of Random Vibration in Plates Using Vibration Absorbers
,”
J. Sound Vib.
,
248
, pp.
585
596
.10.1006/jsvi.2001.3558
8.
Cheung
,
Y. L.
, and
Wong
,
W. O.
,
2009
, “
H∞ and H2 Optimizations of a Dynamic Vibration Absorber for Suppressing Vibrations in Plates
,”
J. Sound Vib.
,
320
, pp.
29
42
.10.1016/j.jsv.2008.07.024
9.
Cheung
,
Y. L.
,
Wong
,
W. O.
, and
Cheng
,
L.
,
2012
, “
Design Optimization of a Damped Hybrid Vibration Absorber
,”
J. Sound Vib.
,
331
, pp.
750
766
.10.1016/j.jsv.2011.10.011
10.
Huang
,
Y. M.
, and
Fuller
,
C. R.
,
1997
, “
The Effects of Dynamic Absorbers on the Forced Vibration of a Cylindrical Shell and Its Coupled Interior Sound Field
,”
J. Sound Vib.
,
200
, pp.
401
418
.10.1006/jsvi.1996.0708
11.
Wong
,
W. O.
,
Tang
,
S. L.
,
Cheung
,
Y. L.
, and
Cheng
,
L.
,
2007
, “
Design of a Dynamic Vibration Absorber for Vibration Isolation of Beams Under Point or Distributed Loading
,”
J. Sound Vib.
,
301
, pp.
898
908
.10.1016/j.jsv.2006.10.028
12.
Wu
,
J. J.
,
2005
, “
Use of Equivalent Damper Method for Free Vibration Analysis of a Beam Carrying Multiple Two Degree of Freedom Spring Damper Mass Systems
,”
J. Sound Vib.
,
281
, pp.
275
293
.10.1016/j.jsv.2004.01.013
13.
Burdisso
,
R. A.
, and
Heilmann
,
J. D.
,
1998
, “
A New Dual Reaction Mass Dynamic Vibration Absorber Actuator for Active Vibration Control
,”
J. Sound Vib.
,
214
, pp.
817
831
.10.1006/jsvi.1998.1552
14.
Gurgoze
,
M.
,
Erdogan
,
G.
, and
Inceoglu
,
S.
,
2001
, “
Bending Vibrations of Beams Coupled by a Double Spring Mass System
,”
J. Sound Vib.
,
243
, pp.
361
369
.10.1006/jsvi.2000.3442
15.
Manikanahally
,
D. N.
, and
Crocker
,
M. J.
,
1991
, “
Vibration Absorber for Hysterically Damped Mass-Loaded Beams
,”
ASME J. Vibr. Acoust.
,
113
, pp.
116
122
.10.1115/1.2930145
16.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
17.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control
,
Wiley
,
New York
.
19.
Candir
,
B.
, and
Ozguven
,
H. N.
,
1986
, “
Suppressing the First and Second Resonances of Beams by Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
111
, pp.
377
390
.10.1016/S0022-460X(86)81399-2
20.
Warburton
,
G. B.
, and
Ayorinde
,
E. O.
,
1980
, “
Optimum Absorber Parameters for Simple Systems
,”
Earthquake Eng. Struct. Dyn.
,
8
, pp.
197
217
.10.1002/eqe.4290080302
21.
Rade
,
D. A.
, and
Steffen
,
V.
,
2000
, “
Optimization of Dynamic Vibration Absorbers Over a Frequency Band
,”
Mech. Syst. Signal Process.
,
14
(
5
), pp.
679
690
.10.1006/mssp.2000.1319
You do not currently have access to this content.