Previous studies on photonic crystals raise the exciting topic of phononic crystals. This paper presents the results of tunable band gaps in the acoustic waves of two-dimensional phononic crystals with reticular geometric structures using the 2D and 3D finite element methods. This paper calculates and discusses the band gap variations of the bulk modes due to different sizes of reticular geometric structures. Results show that adjusting the orientation of the reticular geometric structures can increase or decrease the total elastic band gaps for mixed polarization modes. The band gap phenomena of elastic or acoustic waves can potentially be utilized to achieve vibration-free, high-precision mechanical systems, and sound insulation.
Issue Section:
Research Papers
1.
Johnson
, S. G.
, and Joannopoulos
, J. D.
, 2003, Photonic Crystals: The Road From Theory to Practice
, Kluwer Academic
, Boston
.2.
Joannopoulos
, J. D.
, Meade
, R. D.
, and Winn
, J. N.
, 1995, Photonic Crystals: Molding the Flow of Light
, Princeton University Press
, Princeton, NJ
.3.
Leung
, K. M.
, and Liu
, Y. F.
, 1990, “Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media
,” Phys. Rev. Lett.
0031-9007, 65
, pp. 2646
–2649
.4.
Johnson
, S.
, and Joannopoulos
, J.
, 2001, “Block-Iterative Frequency-Domain Methods for Maxwell’s Equations in a Planewave Basis
,” Opt. Express
1094-4087, 8
, pp. 173
–190
.5.
Hussein
, M. I.
, 2009, “Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,” Proc. R. Soc. London, Ser. A
0950-1207, 465
, pp. 2825
–2848
.6.
Kushwaha
, M. S.
, Halevi
, P.
, Dobrzynski
, L.
, and Djafari-Rouhani
, B.
, 1993, “Acoustic Band Structure of Periodic Elastic Composites
,” Phys. Rev. Lett.
0031-9007, 71
, pp. 2022
–2025
.7.
Vasseur
, J. O.
, Deymier
, P. A.
, Frantziskonis
, G.
, Hong
, G.
, Djafari-Rouhani
, B.
, and Dobrzynski
, L.
, 1998, “Experimental Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Periodic Composite Media
,” J. Phys.: Condens. Matter
0953-8984, 10
, pp. 6051
.8.
Goffaux
, C.
, and Vigneron
, J. P.
, 2001, “Theoretical Study of a Tunable Phononic Band Gap System
,” Phys. Rev. B
0556-2805, 64
, p. 075118
.9.
Tanaka
, Y.
, and Tamura
, S. i.
, 1998, “Surface Acoustic Waves in Two-Dimensional Periodic Elastic Structures
,” Phys. Rev. B
0556-2805, 58
, pp. 7958
–7965
.10.
Wu
, T. -T.
, Huang
, Z. G.
, and Lin
, S.
, 2004, “Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystals Consisting of Materials With General Anisotropy
,” Phys. Rev. B
0556-2805, 69
, p. 094301
.11.
Huang
, Z. -G.
, and Wu
, T. -T.
, 2005, “Temperature Effect on the Bandgaps of Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystals
,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010, 52
, pp. 365
–370
.12.
Wu
, T. -T.
, and Huang
, Z. G.
, 2004, “Level Repulsion of Bulk Acoustic Waves in Composite Materials
,” Phys. Rev. B
0556-2805, 70
, p. 214304
.13.
Wu
, T. -T.
, Hsu
, Z. C.
, and Huang
, Z. G.
, 2005, “Band Gaps and the Electromechanical Coupling Coefficient of a Surface Acoustic Wave in a Two-Dimensional Piezoelectric Phononic Crystal
,” Phys. Rev. B
0556-2805, 71
, p. 064303
.14.
Laude
, V.
, Wilm
, M.
, Benchabane
, S.
, and Khelif
, A.
, 2005, “Full Band Gap for Surface Acoustic Waves in a Piezoelectric Phononic Crystal
,” Phys. Rev. E
1063-651X, 71
, p. 036607
.15.
Wang
, X.
, Zhang
, X. -G.
, Yu
, Q.
, and Harmon
, B. N.
, 1993, “Multiple-Scattering Theory for Electromagnetic Waves
,” Phys. Rev. B
0556-2805, 47
, pp. 4161
–4167
.16.
Leung
, K. M.
, and Qiu
, Y.
, 1993, “Multiple-Scattering Calculation of the Two-Dimensional Photonic Band Structure
,” Phys. Rev. B
0556-2805, 48
, pp. 7767
–7771
.17.
Kafesaki
, M.
, and Economou
, E. N.
, 1999, “Multiple-Scattering Theory for Three-Dimensional Periodic Acoustic Composites
,” Phys. Rev. B
0556-2805, 60
, pp. 11993
–12001
.18.
Psarobas
, I. E.
, Stefanou
, N.
, and Modinos
, A.
, 2000, “Scattering of Elastic Waves by Periodic Arrays of Spherical Bodies
,” Phys. Rev. B
0556-2805, 62
, pp. 278
–291
.19.
Liu
, Z.
, Chan
, C. T.
, Sheng
, P.
, Goertzen
, A. L.
, and Page
, J. H.
, 2000, “Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment
,” Phys. Rev. B
0556-2805, 62
, pp. 2446
–2457
.20.
Yang
, H. Y. D.
, 1996, “Finite Difference Analysis of 2-D Photonic Crystals
,” IEEE Trans. Microwave Theory Tech.
0018-9480, 44
, pp. 2688
–2695
.21.
García-Pablos
, D.
, Sigalas
, M.
, Montero de Espinosa
, F. R.
, Torres
, M.
, Kafesaki
, M.
, and Garcia
, N.
, 2000, “Theory and Experiments on Elastic Band Gaps
,” Phys. Rev. Lett.
0031-9007, 84
, pp. 4349
–4352
.22.
Sun
, J. H.
, and Wu
, T. -T.
, 2005, “Analyses of Mode Coupling in Joined Parallel Phononic Crystal Waveguides
,” Phys. Rev. B
0556-2805, 71
, p. 174303
.23.
Pendry
, J. B.
, and MacKinnon
, A.
, 1992, “Calculation of Photon Dispersion Relations
,” Phys. Rev. Lett.
0031-9007, 69
, pp. 2772
–2775
.24.
Jun
, S.
, Cho
, Y. -S.
, and Im
, S.
, 2003, “Moving Least-Square Method for the Band-Structure Calculation of 2D Photonic Crystals
,” Opt. Express
1094-4087, 11
, pp. 541
–551
.25.
Moreno
, E.
, Erni
, D.
, and Hafner
, C.
, 2002, “Band Structure Computations of Metallic Photonic Crystals With the Multiple Multipole Method
,” Phys. Rev. B
0556-2805, 65
, p. 155120
.26.
Checoury
, X.
, and Lourtioz
, J. -M.
, 2006, “Wavelet Method for Computing Band Diagrams of 2D Photonic Crystals
,” Opt. Commun.
0030-4018, 259
, pp. 360
–365
.27.
Yan
, Z. Z.
, and Wang
, Y. S.
, 2006, “Wavelet-Based Method for Calculating Elastic Band Gaps of Two-Dimensional Phononic Crystals
,” Phys. Rev. B
0556-2805, 74
, p. 224303
.28.
Chiang
, P. J.
, Yu
, C. P.
, and Chang
, H. C.
, 2007, “Analysis of Two-Dimensional Photonic Crystals Using a Multidomain Pseudospectral Method
,” Phys. Rev. E
1063-651X, 75
, p. 026703
.29.
Dobson
, D. C.
, 1999, “An Efficient Method for Band Structure Calculations in 2D Photonic Crystals
,” J. Comput. Phys.
0021-9991, 149
, pp. 363
–376
.30.
Axmann
, W.
, and Kuchment
, P.
, 1999, “An Efficient Finite Element Method for Computing Spectra of Photonic and Acoustic Band-Gap Materials: I. Scalar Case
,” J. Comput. Phys.
0021-9991, 150
, pp. 468
–481
.31.
Wu
, T. -T.
, Huang
, Z. G.
, Tsai
, T. C.
, and Wu
, T. C.
, 2008, “Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,” Appl. Phys. Lett.
0003-6951, 93
, p. 111902
.32.
Huang
, G. L.
, and Sun
, C. T.
, 2010, “Band Gaps in a Multiresonator Acoustic Metamaterial
,” ASME J. Vibr. Acoust.
0739-3717, 132
, p. 031003
.33.
Salehian
, A.
, and Inman
, D. J.
, 2010, “Micropolar Continuous Modeling and Frequency Response Validation of a Lattice Structure
,” ASME J. Vibr. Acoust.
0739-3717, 132
, p. 011010
.34.
Burger
, M. S.
, Osher
, J.
, and Yablonovitch
, E.
, 2004, “Inverse Problem Techniques for the Design of Photonic Crystals
,” IEICE Trans. Electron.
0916-8524,” E87C
, pp. 258
–265
.35.
COMSOL Multiphysics
, 2009, Structural Mechanics, Manual
, COMSOL AB
, Stockholm, Sweden
.36.
Tanaka
, Y.
, Tomoyasu
, Y.
, and Tamura
, S. I.
, 2000, “Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch
,” Phys. Rev. B
0556-2805, 62
(11
), pp. 7387
–7392
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.