This paper presents an analytical technique for the analysis of a stochastic dynamic system whose damping behavior is described by a fractional derivative of order 1/2. In this approach, an eigenvector expansion method is used to obtain the response of the system. The properties of Laplace transforms of convolution integrals are used to write a set of general Duhamel integral type expressions for the response of the system. The general response contains two parts, namely zero state and zero input. For a stochastic analysis, the input force is treated as a random process with specified mean and correlation functions. An expectation operator is applied on a set of expressions to obtain the stochastic characteristics, namely the variance and covariance responses of the system. Closed form stochastic response expressions are obtained for white noise. Numerical results are presented to show the stochastic response of a fractionally damped system subjected to white noise. Results show that stochastic response of the fractionally damped system oscillates even when the damping ratio is greater than its critical value.

1.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
, pp.
201
210
.
2.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
, pp.
741
748
.
3.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
, pp.
918
925
.
4.
Koeller
,
R. C.
,
1984
, “
Application of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
, pp.
299
307
.
5.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1991
, “
Fractional-Derivative Maxwell Model for Viscous Dampers
,”
Journal of Structural Engineering
,
117
, pp.
2708
2724
.
6.
Mainardi
,
F.
,
1994
, “
Fractional Relaxation in Anelastic Solids
,”
J. Alloys Compd.
,
211-1
, pp.
534
538
.
7.
Shen
,
K. L.
, and
Soong
,
T. T.
,
1995
, “
Modeling of Viscoelastic Dampers for Structural Applications
,”
J. Eng. Mech.
,
121
, pp.
694
701
.
8.
Pritz
,
T.
,
1996
, “
Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
,
195
, pp.
103
115
.
9.
Papoulia
,
K. D.
, and
Kelly
,
J. M.
,
1997
, “
Visco-Hyperelastic Model for Filled Rubbers Used in Vibration Isolation
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
292
297
.
10.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1992
, “
Spring-Viscous Damper Systems for Combined Seismic and Vibration Isolation
,”
Earthquake Eng. Struct. Dyn.
,
21
, pp.
649
664
.
11.
Lee
,
H. H.
, and
Tsai
,
C. S.
,
1994
, “
Analytical Model for Viscoelastic Dampers for Seismic Mitigation of Structures
,”
Comput. Struct.
,
50
, No.
1
, pp.
111
121
.
12.
Skaar
,
S. B.
,
Michel
,
A. N.
, and
Miller
,
R. K.
,
1988
, “
Stability of Viscoelastic Control Systems
,”
IEEE Trans. Autom. Control
,
33
, pp.
348
357
.
13.
Makroglou
,
A.
,
Miller
,
R. K.
, and
Skaar
,
S.
,
1994
, “
Computational Results for a Feedback Control for a Rotating Viscoelastic Beam
,”
J. Guid. Control Dyn.
,
17
, pp.
84
90
.
14.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
,
14
, pp.
304
311
.
15.
Mbodje, B., Montseny, C., Audounet, J., and Benchimol, P., 1994, “Optimal Control for Fractionally Damped Flexible Systems,” The Proceedings of the Third IEEE Conference on Control Applications, The University of Strathclyde, Glasgow, August 24–26, pp. 1329–1333.
16.
Makris
,
N.
,
Dargush
,
G. F.
, and
Constantinou
,
M. C.
,
1993
, “
Dynamic Analysis of Generalized Viscoelastic Fluids
,”
J. Eng. Mech.
,
119
, pp.
1663
1679
.
17.
Suarez
,
L. E.
, and
Shokooh
,
A.
,
1997
, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives
,”
ASME J. Appl. Mech.
,
64
, pp.
629
635
.
18.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Application of Fractional Operators to the Analysis of Damped Vibrations of Viscoelastic Single-Mass Systems
,”
J. Sound Vib.
,
199
, pp.
567
586
.
19.
Gaul
,
L.
,
Klein
,
P.
, and
Kemple
,
S.
,
1989
, “
Impulse Response Function of an Oscillator with Fractional Derivative in Damping Description
,”
Mech. Res. Commun.
,
16
, pp.
297
305
.
20.
Gaul
,
L.
,
Klein
,
P.
, and
Kemple
,
S.
,
1991
, “
Damping Description Involving Fractional Operators
,”
Mech. Syst. Signal Process.
,
5
, pp.
8
88
.
21.
Padovan
,
J.
,
1987
, “
Computational Algorithms for Finite Element Formulation Involving Fractional Operators
,”
Computational Mechanics
,
2
, pp.
271
287
.
22.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
, pp.
229
241
.
23.
Lixia, Y., and Agrawal, O. P., 1998, “A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives,” ASME J. Vibr. Acoust., in press.
24.
Riewe
,
F.
,
1996
, “
Nonconservative Lagrangian and Hamiltonian mechanics
,”
Phys. Rev. E
,
53
, pp.
1890
1899
.
25.
Riewe
,
F.
,
1997
, “
Mechanics with Fractional Derivative
,”
Phys. Rev. E
,
55
, pp.
3581
3592
.
26.
Mainardi, F., 1997, “Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics,” Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, eds., Springer Verlag, Wien, New York, pp. 291–348.
27.
Spanos
,
P. D.
, and
Zeldin
,
B. A.
,
1997
, “
Random Vibration of Systems with Frequency-Dependent Parameters or Fractional Derivatives
,”
J. Eng. Mech.
,
123
, pp.
290
292
.
28.
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press, New York, NY.
29.
Miller and Ross, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, NY.
30.
Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach Science Publishers, Longhorne, PA.
31.
Kiryakova, V. S., 1993, Generalized Fractional Calculus and Applications, Longman Scientific & Technical, Longman House, Burnt Mill, Harlow, England.
32.
Podlubny, I., 1999, Fractional Differential Equations, Academic Press, New York, NY.
33.
Gorenflo, R., and Mainardi, F., 1997, “Fractional Calculus: Integral and Differential Equations of Fractional Order,” Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, eds., Springer Verlag, Wien, New York, pp. 223–276.
34.
Butzer P. L., and Westphal, U, 2000, “An Introduction to Fractional Calculus,” Applications of Fractional Calculus in Physics, R. Hilfer, ed., World Scientific, New Jersey, pp. 1–85.
35.
Spiegel, M. R., 1998, Advanced Mathematics for Engineers and Scientists, McGraw Hill, New York, NY.
36.
Lin, Y. K., 1965, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York, NY.
37.
Nigam, N. C., 1983, Introduction to Random Vibrations, MIT Press, Cambridge, MA.
You do not currently have access to this content.