Abstract

This study utilized an explicit dynamic approach to analyze the dynamic behavior of large-diameter pipes subjected to localized blast loading. The objective of the validation study was to investigate the effects of the explosion's blast force on the dynamic response and material behaviors in large-diameter pipes. The existing experimental data were benchmarked with the numerical results to assess the prediction accuracy. The crucial factors include the amount of the explosive mass (0.2–5.0 kg), the contact regions, and the wall thickness of the pipe (1.46 cm and 2.62 cm). As a result, the contact area significantly influenced the deformation range in each case, ranging from 50 to 400 cm2. The amount of explosive energy was crucial in determining the material response. For instance, deformations like pitting and spallation were found in the case when testing with less than 1.4 kg of TNT, whereas complete tearing in the central area was found in the case for higher explosive mass. With modest explosive mass, the pipe material underwent inelastic deformation. However, the material became vulnerable to adiabatic shearing failure when the explosive energy exceeded 1.4 kg in penetrating the 2.62 cm-thick walls. The difference between the simulations and experimental deformation (1.46-mm-thickness) was average at 8.5%, which presents an attractive tool. Therefore, this explicitdynamic tool will be used in subsequent research to study the responses of structural building systems to occasional explosion scenarios and capture the explosion fragments.

References

1.
Bates
,
D.
,
2004
, “
Unpredicted Pipeline Explosion
,”
J. Failure Anal. Prev.
,
4
(
4
), pp.
8
12
.10.1361/15477020420486
2.
Abdollahzadeh
,
G.
,
Faghihmaleki
,
H.
, and
Avazeh
,
M.
,
2020
, “
Progressive Collapse Risk and Reliability of Buildings Encountering Limited Gas–Pipe Explosion After Moderate Earthquakes
,”
SN Appl. Sci.
, 2, p.
657
.10.1007/s42452-020-2509-6
3.
Chen
,
C. H.
,
Sheen
,
Y. N.
, and
Wang
,
H. Y.
,
2016
, “
Case Analysis of Catastrophic Underground Pipeline Gas Explosion in Taiwan
,”
Eng. Failure Anal.
,
65
, pp.
39
47
.10.1016/j.engfailanal.2016.03.013
4.
Hu
,
Y.
,
Wu
,
C.
,
Lukaszewicz
,
M.
,
Dragos
,
J.
,
Ren
,
J.
, and
Haskett
,
M.
,
2011
, “
Characteristics of Confined Blast Loading in Unvented Structures
,”
Int. J. Prot. Struct.
,
2
(
1
), pp.
21
43
.10.1260/2041-4196.2.1.21
5.
Tang
,
Q.
,
Jiang
,
N.
,
Yao
,
Y.
,
Zhou
,
C.
, and
Wu
,
T.
,
2020
, “
Experimental Investigation on Response Characteristics of Buried Pipelines Under Surface Explosion Load
,”
Int. J. Pressure Vessels Piping
,
183
, p.
104101
.10.1016/j.ijpvp.2020.104101
6.
Wang
,
C. H.
,
Wang
,
S. S.
,
Zhang
,
J. X.
, and
Ma
,
F.
,
2021
, “
Pressure Load Characteristics of Explosions in an Adjacent Chamber
,”
Shock Vib.
, 2021(1), pp.
1
9
.10.1155/2021/3726306
7.
Liang
,
X.
,
Chen
,
J.
,
Wang
,
R.
, and
Hu
,
X.
,
2020
, “
The Uncertainty Quantification of Ship Shock Environment Subjected to Non-Contact Underwater Explosion
,”
Chin. J. Ship Res.
,
15
(
6
), pp.
128
136
.10.19693/j.issn.1673-3185.01826
8.
Karagiozova
,
D.
,
Nurick
,
G.
, and
Yuen
,
S. C. K.
,
2005
, “
Energy Absorption of Aluminium Alloy Circular and Square Tubes Under an Axial Explosive Load
,”
Thin-Walled Struct.
,
43
(
6
), pp.
956
982
.10.1016/j.tws.2004.11.002
9.
Muangput
,
B.
,
Zin
,
T.
,
Namchanthra
,
S.
,
Priyadumkol
,
J.
,
Phengpom
,
T.
,
Chookaew
,
W.
,
Suvanjumrat
,
C.
, and
Promtong
,
M.
,
2024
, “
CFD Elucidation of High-Pressure Subcooled Boiling Flow Towards Effects of Variable Refrigerant Properties Using OpenFOAM Empirical Closures
,”
Appl. Eng. Sci.
,
19
, p.
100187
.10.1016/j.apples.2024.100187
10.
Phirommark
,
P.
,
Namchanthra
,
S.
,
Chaiyanupong
,
J.
,
Uapipatanakul
,
S.
,
Chookaew
,
W.
,
Suvanjumrat
,
C.
, and
Promtong
,
M.
,
2023
, “
CFD Elucidation of Microscopic Particles in a Low-Volumetric Classifier Towards Effects of Stokes Number and Density Ratio
,”
Int. J. Thermofluids
,
20
, p.
100497
.10.1016/j.ijft.2023.100497
11.
Phirommark
,
P.
,
Suvanjumrat
,
C.
,
Chookaew
,
W.
,
Uapipatanakul
,
S.
, and
Promtong
,
M.
,
2022
, “
A CFD Study of Particle Flows (PM1, PM10, PM100) in Low-Volume Impact Separator
,”
Int. J. GEOMATE
,
22
(
91
), pp.
53
61
.10.21660/2022.91.gxi310
12.
Promtong
,
M.
,
Cheung
,
S. C. P.
,
Yeoh
,
G. H.
,
Vahaji
,
S.
, and
Tu
,
J.
,
2018
, “
CFD Investigation of Sub-Cooled Boiling Flow Using a Mechanistic Wall Heat Partitioning Approach With Wet-Steam Properties
,”
J. Comput. Multiphase Flows
,
10
(
4
), pp.
239
258
.10.1177/1757482X18791900
13.
Promtong
,
M.
,
Phirommark
,
P.
,
Siri
,
R.
,
Kaewsawatwong
,
P.
,
Priyadumkol
,
J.
, and
Suvanjumrat
,
C.
,
2022
, “
Analysis of Particle Flows (PM1, PM5, PM10) in Forced Ventilation System Using CFD Technique
,”
Suranaree J. Sci. Technol.
,
29
(
6
), pp.
1
8
.https://openurl.ebsco.com/EPDB%3Agcd%3A3%3A13439475/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A160100703&crl=c&link_origin=www.google.com
14.
Anderson
,
R.
,
Elliott
,
N.
, and
Pember
,
R.
,
2004
, “
An Arbitrary Lagrangian–Eulerian Method With Adaptive Mesh Refinement for the Solution of the Euler Equations
,”
J. Comput. Phys.
,
199
(
2
), pp.
598
617
.10.1016/j.jcp.2004.02.021
15.
Lidner
,
M.
, and
Szcześniak
,
Z.
,
2016
, “
Numerical Analysis of Blast Load From Explosive Materials Using Finite Volume Method
,”
Key Eng. Mater.
,
723
, pp.
789
794
.10.4028/www.scientific.net/KEM.723.789
16.
Han
,
Y.
, and
Liu
,
H.
,
2015
, “
Finite Element Simulation of Medium-Range Blast Loading Using LS-DYNA
,”
Shock Vib.
,
2015
, pp.
1
9
.10.1155/2015/631493
17.
Giannaros
,
E.
,
Kotzakolios
,
T.
, and
Kostopoulos
,
V.
,
2016
, “
Blast Response of Composite Pipeline Structure Using Finite Element Techniques
,”
J. Compos. Mater.
,
50
(
25
), pp.
3459
3476
.10.1177/0021998315618768
18.
Thacker
,
B. H.
,
Rodriguez
,
E. A.
,
Pepin
,
J. E.
, and
Riha
,
D. S.
,
2003
, “
Uncertainty Quantification of a Containment Vessel Dynamic Response Subjected to High-Explosive Detonation Impulse Loading
,”
IMAC-XXI: Conference & Exposition on Structural Dynamics
, Feb. 3–6, Kissimmee, FL pp.
1
9
.https://www.researchgate.net/profile/Edward-Rodriguez-8/publication/236525322_Uncertainty_Quantification_of_a_Containment_Vessel_Dynamic_Response_Subjected_to_High-Explosive_Detonation_Impulse_Loading/links/557b2bfb08aeb61eae21c728/Uncertainty-Quantification-of-a-Containment-Vessel-Dynamic-Response-Subjected-to-High-Explosive-Detonation-Impulse-Loading.pdf
19.
Alvin
,
K.
,
Oberkampf
,
W.
,
Diegert
,
K.
, and
Rutherford
,
B.
,
1998
, “
Uncertainty Quantification in Computational Structural Dynamics: A New Paradigm for Model Validation
,” 16th International Modal Analysis Conference, Santa Barabara, CA, Feb. 2–5, pp.
1191
1198
.
20.
Shi
,
Y.
,
Hao
,
H.
, and
Li
,
Z. X.
,
2007
, “
Numerical Simulation of Blast Wave Interaction With Structure Columns
,”
Shock Waves
,
17
(
1–2
), pp.
113
133
.10.1007/s00193-007-0099-5
21.
Sohaimi
,
A. S.
,
Risby
,
M.
,
Ishak
,
S. A.
,
Khalis
,
S.
,
Norazman
,
M.
,
Ariffin
,
I.
, and
Yusof
,
M.
,
2016
, “
Using Computational Fluid Dynamics (CFD) for Blast Wave Propagation Under Structure
,”
Procedia Comput. Sci.
,
80
, pp.
1202
1211
.10.1016/j.procs.2016.05.463
22.
Yuan
,
Y.
,
Zhang
,
C.
, and
Xu
,
Y.
,
2021
, “
Influence of Standoff Distance on the Deformation of Square Steel Plates Subjected to Internal Blast Loadings
,”
Thin-Walled Struct.
,
164
, p.
107914
.10.1016/j.tws.2021.107914
23.
Song
,
K.
,
Long
,
Y.
,
Ji
,
C.
,
Gao
,
F.
, and
Chen
,
H.
,
2016
, “
Experimental and Numerical Studies on the Deformation and Tearing of X70 Pipelines Subjected to Localized Blast Loading
,”
Thin-Walled Struct.
,
107
, pp.
156
168
.10.1016/j.tws.2016.03.010
24.
Mkrtychev
,
O.
, and
Savenkov
,
A.
,
2019
, “
Modeling of Blast Effects on Underground Structure
,”
Int. J. Comput. Civ. Struct. Eng.
,
15
(
4
), pp.
111
122
.10.22337/2587-9618-2019-15-4-111-122
25.
Valliappan
,
S.
, and
Ang
,
K.
,
1988
, “
Finite Element Analysis of Vibrations Induced by Propagating Waves Generated by Tunnel Blasting
,”
Rock Mech. Rock Eng.
,
21
(
1
), pp.
53
78
.10.1007/BF01019675
26.
Fortier
,
C.
, and
Beaumont
,
F.
,
1997
, “
A CFD Computer Simulation for Modelling Large-Scale Blast Propagation (FBINBLAST)
,” Defence Research and Development Canada Valcartier (Quebec), Québec City, QC, Canada.
27.
Kumar
,
S.
,
Mishra
,
A. K.
,
Choudhary
,
B. S.
,
Sinha
,
R. K.
,
Deepak
,
D.
, and
Agrawal
,
H.
,
2020
, “
Prediction of Ground Vibration Induced Due to Single Hole Blast Using Explicit Dynamics
,”
Min., Metall. Explor.
,
37
(
2
), pp.
733
741
.10.1007/s42461-019-00162-z
28.
Satkar
,
A. R.
,
Mache
,
A.
, and
Kulkarni
,
A.
,
2022
, “
Numerical Investigation on Perforation Resistance of Glass-Carbon/Epoxy Hybrid Composite Laminate Under Ballistic Impact
,”
Mater. Today: Proc.
,
59
, pp.
734
741
.10.1016/j.matpr.2021.12.464
29.
Cho
,
S. H.
, and
Kaneko
,
K.
,
2004
, “
Influence of the Applied Pressure Waveform on the Dynamic Fracture Processes in Rock
,”
Int. J. Rock Mech. Min. Sci.
,
41
(
5
), pp.
771
784
.10.1016/j.ijrmms.2004.02.006
30.
Saharan
,
M. R.
, and
Mitri
,
H.
,
2008
, “
Numerical Procedure for Dynamic Simulation of Discrete Fractures Due to Blasting
,”
Rock Mech. Rock Eng.
,
41
(
5
), pp.
641
670
.10.1007/s00603-007-0136-9
31.
Lee
,
E. L.
,
Hornig
,
C.
, and
Kury
,
J. W.
,
1968
, “
Adiabatic Expansion of High Explosive Detonation Products
,” Lawrence Radiation Laboratory, Livermore, CA.
32.
Zhou
,
N.
,
Wang
,
J.
,
Jiang
,
D.
,
Tang
,
K.
, and
Fang
,
Y.
,
2020
, “
Study on the Failure Mode of a Sandwich Composite Structure Under the Combined Actions of Explosion Shock Wave and Fragments
,”
Mater. Des.
,
196
, p.
109166
.10.1016/j.matdes.2020.109166
33.
Liang
,
X.
, and
Wang
,
R.-L.
,
2019
, “
Verification and Validation of Detonation Modeling
,”
Def. Technol.
,
15
(
3
), pp.
398
408
.10.1016/j.dt.2018.11.005
34.
Ewing
,
M.
, and
Hwang
,
H.-J.
,
1995
, “
Damage Propagation in Thin-Walled Structures Due to Internal Blast
,”
AIAA
Paper No. 1995-1379.10.2514/6.1995-1379
35.
Godio
,
M.
,
Portal
,
N. W.
,
Flansbjer
,
M.
,
Magnusson
,
J.
, and
Byggnevi
,
M.
,
2021
, “
Experimental and Numerical Approaches to Investigate the Out-of-Plane Response of Unreinforced Masonry Walls Subjected to Free Far-Field Blasts
,”
Eng. Struct.
,
239
, p.
112328
.10.1016/j.engstruct.2021.112328
36.
Hua
,
Y.
,
Kumar Akula
,
P.
,
Gu
,
L.
,
Berg
,
J.
, and
Nelson
,
C. A.
,
2014
, “
Experimental and Numerical Investigation of the Mechanism of Blast Wave Transmission Through a Surrogate Head
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031010
.10.1115/1.4026156
37.
Himanshu
,
V. K.
,
Mishra
,
A.
,
Vishwakarma
,
A. K.
,
Roy
,
M.
, and
Singh
,
P.
,
2022
, “
Explicit Dynamics Based Numerical Simulation Approach for Assessment of Impact of Relief Hole on Blast Induced Deformation Pattern in an Underground Face Blast
,”
Geomech. Geophys. Geo-Energy Geo-Resour.
,
8
, p.
19
.10.1007/s40948-021-00327-5
38.
Vonneumann
,
J.
, and
Richtmyer
,
R. D.
,
1950
, “
A Method for the Numerical Calculation of Hydrodynamic Shocks
,”
J. Appl. Phys.
,
21
(
3
), pp.
232
237
.10.1063/1.1699639
39.
Zhang
,
C.
,
Gholipour
,
G.
, and
Mousavi
,
A. A.
,
2019
, “
Nonlinear Dynamic Behavior of Simply-Supported RC Beams Subjected to Combined Impact-Blast Loading
,”
Eng. Struct.
,
181
, pp.
124
142
.10.1016/j.engstruct.2018.12.014
40.
Flanagan
,
D.
, and
Belytschko
,
T.
,
1981
, “
A Uniform Strain Hexahedron and Quadrilateral With Orthogonal Hourglass Control
,”
Int. J. Numer. Methods Eng.
,
17
(
5
), pp.
679
706
.10.1002/nme.1620170504
41.
Liang
,
X.
,
Wang
,
Z.
, and
Wang
,
R.
,
2017
, “
Deformation Model and Performance Optimization Research of Composite Blast Resistant Wall Subjected to Blast Loading
,”
J. Loss Prev. Process Ind.
,
49
, pp.
326
341
.10.1016/j.jlp.2017.07.010
42.
Wang
,
I. T.
,
2014
, “
Simulation and Experimental Validation of the Dynamic Pressure of Shock Wave Under Free-Field Blast Loading
,”
J. Vibroeng.
,
16
(
7
), pp.
3547
3556
.https://www.extrica.com/article/15415
43.
Liang
,
S. M.
,
Hsu
,
J. L.
, and
Wang
,
J. S.
,
2001
, “
Numerical Study of Cylindrical Blast-Wave Propagation and Reflection
,”
AIAA J.
,
39
(
6
), pp.
1152
1158
.10.2514/2.1429
44.
Hallquist
,
J.
,
Goudreau
,
G.
, and
Benson
,
D.
,
1985
, “
Sliding Interfaces With Contact-Impact in Large-Scale Lagrangian Computations
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
107
137
.10.1016/0045-7825(85)90030-1
45.
Kaurin
,
C.
, and
Varslot
,
M. O.
,
2010
, “
Blast Loading on Square Steel Plates; a Comparative Study of Numerical Methods
,”
Master thesis
, Norwegian University of Science and Technology, Trondheim, Norway.http://hdl.handle.net/11250/236616
46.
Feldgun
,
V.
,
Karinski
,
Y.
,
Edri
,
I.
,
Tsemakh
,
D.
, and
Yankelevsky
,
D.
,
2012
, “
On Blast Pressure Analysis Due to a Partially Confined Explosion: II. Numerical Studies
,”
Int. J. Prot. Struct.
,
3
(
1
), pp.
61
79
.10.1260/2041-4196.3.1.61
47.
Baker
,
W. E.
,
Cox
,
P.
,
Kulesz
,
J.
,
Strehlow
,
R.
, and
Westine
,
P.
,
1983
,
Explosion Hazards and Evaluation
, Elsevier Scientific Publishing Co., Amsterdam, The Netherlands.
48.
Station
,
U.
,
1986
, “
Fundamentals of Protective Design for Conventional Weapons
,” U.S. Army, Navy and Air Force, U.S. Government Printing Office, Washington, DC, Report No.
TM5-855-1
.https://www.nrc.gov/docs/ml1019/ml101970069.pdf
49.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
50.
Rushton
,
N.
,
Schleyer
,
G.
,
Clayton
,
A.
, and
Thompson
,
S.
,
2008
, “
Internal Explosive Loading of Steel Pipes
,”
Thin-Walled Struct.
,
46
(
7–9
), pp.
870
877
.10.1016/j.tws.2008.01.027
51.
Giuliano
,
D.
,
Lomazzi
,
L.
,
Giglio
,
M.
, and
Manes
,
A.
,
2023
, “
On Eulerian-Lagrangian Methods to Investigate the Blast Response of Composite Plates
,”
Int. J. Impact Eng.
,
173
, p.
104469
.10.1016/j.ijimpeng.2022.104469
52.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.10.1016/j.jcp.2014.01.006
53.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.10.1115/1.4001771
54.
Celik
,
I.
, and
Zhang
,
W. M.
,
1995
, “
Calculation of Numerical Uncertainty Using Richardson Extrapolation: Application to Some Simple Turbulent Flow Calculations
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
439
445
.10.1115/1.2817281
55.
Chen
,
A.
,
Louca
,
L.
, and
Elghazouli
,
A.
,
2013
, “
Blast Response of Field Objects
,”
Fourth ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
,
Kos Island, Greece
,
June 12–14
, pp.
4545
4556
.https://www.eccomasproceedia.org/conferences/thematic-conferences/compdyn-2013/4830
You do not currently have access to this content.