Abstract

Over the past two decades, higher-order methods have gained much broader use in computational science and engineering as these schemes are often more efficient per degree-of-freedom at achieving a prescribed error tolerance than lower-order methods. During this time, higher-order variants of most discretization schemes, such as finite difference methods, finite volume methods, and finite element methods, have emerged. The finite volume method is arguably the most widely used discretization technique in production-level computational fluid dynamics solvers due to its robustness and conservation properties. However, most finite volume solvers only employ a conventional second-order scheme. To leverage the benefits of higher-order methods, the higher-order finite volume method seems the most natural for those seeking to extend their legacy solvers to higher-order. Nonetheless, ensuring higher-order accuracy is maintained is quite challenging as the implementation requirements for a higher-order scheme are much greater than those of a lower-order scheme. In this work, a methodology for verifying higher-order finite volume codes is presented. The higher-order finite volume method is outlined in detail. Order verification tests are proposed for all major components, including the treatment of curved boundaries and the higher-order solution reconstruction. System-level verification tests are performed using the weak form of the method of manufactured solutions. Several canonical verification cases are also presented for the Euler and laminar Navier–Stokes equations.

References

1.
Wang
,
Z.
,
Fidkowski
,
K.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
Cary
,
A.
,
Deconinck
,
H.
, et al.,
2013
, “
High-Order CFD Methods: Current Status and Perspective
,”
Int. J. Numer. Methods Fluids
,
72
(
8
), pp.
811
845
.10.1002/fld.3767
2.
Pulliam
,
T. H.
,
2011
, “
High Order Accurate Finite Difference Methods: As Seen in OVERFLOW
,”
AIAA
Paper No. 2011-3851.10.2514/6.2011-3851
3.
Brehm
,
C.
,
Barad
,
M. F.
,
Housman
,
J. A.
, and
Kiris
,
C. C.
,
2015
, “
A Comparison of Higher-Order Finite Difference Shock Capturing Schemes
,”
Comput. Fluids
,
122
, pp.
184
208
.10.1016/j.compfluid.2015.08.023
4.
Ollivier-Gooch
,
C.
, and
Van Altena
,
M.
,
2002
, “
A High-Order-Accurate Unstructured Mesh Finite Volume Scheme for the Advection-Diffusion Equation
,”
J. Comput. Phys.
,
181
(
2
), pp.
729
752
.10.1006/jcph.2002.7159
5.
Hoshyari
,
S.
, and
Gooch
,
C. F. O.
,
2018
, “
A Higher-Order Unstructured Finite Volume Solver for Three-Dimensional Compressible Flows
,”
AIAA
Paper No. 2018-1306.10.2514/6.2018-1306
6.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations
,”
J. Comput. Phys.
,
138
(
2
), pp.
251
285
.10.1006/jcph.1997.5454
7.
Ceze
,
M.
, and
Fidkowski
,
K. J.
,
2014
, “
Drag Prediction Using Adaptive Discontinuous Finite Elements
,”
J. Aircr.
,
51
(
4
), pp.
1284
1294
.10.2514/1.C032622
8.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press (CUP
), Cambridge, UK.
9.
Roache
,
P.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
, Socorro, NM.
10.
Woods
,
C.
, and
Starkey
,
R. P.
,
2015
, “
Verification of Fluid-Dynamic Codes in the Presence of Shocks and Other Discontinuities
,”
J. Comput. Phys.
,
294
, pp.
312
328
.10.1016/j.jcp.2015.03.055
11.
Xue
,
W.
,
Wang
,
H.
, and
Roy
,
C. J.
,
2023
, “
Code Verification for the SENSEI CFD Code
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
8
(
2
), p.
021003
.10.1115/1.4062609
12.
Pereira
,
F. S.
,
Grinstein
,
F. F.
,
Israel
,
D. M.
, and
Eça
,
L.
,
2022
, “
Verification and Validation: The Path to Predictive Scale-Resolving Simulations of Turbulence
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
7
(
2
), p.
021003
.10.1115/1.4053884
13.
Lovato
,
S.
,
Toxopeus
,
S. L.
,
Settels
,
J. W.
,
Keetels
,
G. H.
, and
Vaz
,
G.
,
2021
, “
Code Verification of Non-Newtonian Fluid Solvers for Single- and Two-Phase Laminar Flows
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
6
(
2
), p.
021002
.10.1115/1.4050131
14.
Muralha
,
J.
,
Eça
,
L.
, and
Klaij
,
C. M.
,
2020
, “
Code Verification of a Pressure-Based Solver for Subsonic Compressible Flows
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
5
(
4
), p.
041001
.10.1115/1.4048750
15.
Mills
,
B. H.
,
Hetzler
,
A. C.
, and
Deng
,
O. W.
,
2019
, “
Verification of Advective Bar Elements Implemented in the Sierra/Aria Thermal Response Code
,”
ASME J. Verif., Valid. Uncertainty Quantif.
,
3
(
3
), p.
031003
.10.1115/1.4041837
16.
Aycock
,
K. I.
,
Rebelo
,
N.
, and
Craven
,
B. A.
,
2020
, “
Method of Manufactured Solutions Code Verification of Elastostatic Solid Mechanics Problems in a Commercial Finite Element Solver
,”
Comput. Struct.
,
229
, p.
106175
.10.1016/j.compstruc.2019.106175
17.
Knupp
,
P.
, and
Salari
,
K.
,
2002
,
Verification of Computer Codes in Computational Science and Engineering
,
Chapman and Hall/CRC
, Boca Raton, FL.
18.
Kelley
,
C. T.
, and
Keyes
,
D. E.
,
1998
, “
Convergence Analysis of Pseudo-Transient Continuation
,”
SIAM J. Numer. Anal.
,
35
(
2
), pp.
508
523
.10.1137/S0036142996304796
19.
Ceze
,
M.
, and
Fidkowski
,
K.
,
2013
, “
Pseudo-Transient Continuation, Solution Update Methods, and CFL Strategies for DG Discretizations of the RANS-SA Equations
,”
AIAA
Paper No. 2013-2686.10.2514/6.2013-2686
20.
Kelley
,
C. T.
,
1995
,
Iterative Methods for Linear and Nonlinear Equations
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
21.
Mulder
,
W. A.
, and
Van Leer
,
B.
,
1985
, “
Experiments With Implicit Upwind Methods for the Euler Equations
,”
J. Comput. Phys.
,
59
(
2
), pp.
232
246
.10.1016/0021-9991(85)90144-5
22.
Bücker
,
H. M.
,
Pollul
,
B.
, and
Rasch
,
A.
,
2009
, “
On CFL Evolution Strategies for Implicit Upwind Methods in Linearized Euler Equations
,”
Int. J. Numer. Methods Fluids
,
59
(
1
), pp.
1
18
.10.1002/fld.1798
23.
Ceze
,
M.
,
2013
, “
A Robust hp-Adaptation Method for Discontinuous Galerkin Discretizations Applied to Aerodynamic Flows
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
24.
Abreu
,
R.
,
2013
, “
Complex Steps Finite Differences
,” Ph.D. thesis,
Universidad de Granada
,
Granada, Spain
.
25.
Nielsen
,
E. J.
, and
Kleb
,
W. L.
,
2006
, “
Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables
,”
AIAA J.
,
44
(
4
), pp.
827
836
.10.2514/1.15830
26.
Mavriplis
,
D.
,
1998
, “
On Convergence Acceleration Techniques for Unstructured Meshes
,”
AIAA
Paper No. 98-2966.10.2514/6.1998-2966
27.
Barth
,
T.
, and
Frederickson
,
P.
,
1990
, “
Higher Order Solution of the Euler Equations on Unstructured Grids Using Quadratic Reconstruction
,”
AIAA
Paper No. 90-13.10.2514/6.1990-13
28.
Barth
,
T.
,
1993
, “
Recent Developments in High Order k-Exact Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 93-0668.10.2514/6.1993-668
29.
Ollivier-Gooch
,
C.
,
Nejat
,
A.
, and
Michalak
,
K.
,
2009
, “
Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations
,”
AIAA J.
,
47
(
9
), pp.
2105
2120
.10.2514/1.40585
30.
Jalali
,
A.
, and
Ollivier-Gooch
,
C.
,
2014
, “
Higher-Order Least-Squares Reconstruction for Turbulent Aerodynamic Flows
,”
Proceedings of the 11th World Congress on Computational Mechanics
, Barcelona, Spain, July 20–25, pp.
1
12
.
31.
Jalali
,
A.
,
2017
, “
An Adaptive Higher-Order Unstructured Finite Volume Solver for Turbulent Compressible Flows
,” Ph.D. thesis,
University of British Columbia
,
Vancouver, BC, Canada
.
32.
Mavriplis
,
D.
,
2003
, “
Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 2003-3986.10.2514/6.2003-3986
33.
Van Loan
,
C.
,
1985
, “
On the Method of Weighting for Equality-Constrained Least-Squares Problems
,”
SIAM J. Numer. Anal.
,
22
(
5
), pp.
851
864
.10.1137/0722051
34.
Golub
,
G. H.
, and
Van Loan
,
C.
,
1996
,
Matrix Computations
, 3rd ed.,
Johns Hopkins University Press
, Baltimore, MD.
35.
Jalali
,
A.
, and
Ollivier-Gooch
,
C. F.
,
2013
, “
Higher-Order Finite Volume Solution Reconstruction on Highly Anisotropic Meshes
,”
AIAA
Paper No. 2013-2565. 10.2514/6.2013-2565
36.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier LTD
,
Oxford, UK
.
37.
Silvester
,
P.
,
1969
, “
High-Order Polynomial Triangular Finite Elements for Potential Problems
,”
Int. J. Eng. Sci.
,
7
(
8
), pp.
849
861
.10.1016/0020-7225(69)90065-2
38.
Okabe
,
M.
, and
Noboru
,
K.
,
1981
, “
Some General Lagrange Interpolations Over Simplex Finite Elements With Reference to Derivative Singularities
,”
Comput. Methods Appl. Mech. Eng.
,
28
(
1
), pp.
1
25
.10.1016/0045-7825(81)90023-2
39.
Chan
,
J.
, and
Warburton
,
T.
,
2015
, “
A Comparison of High Order Interpolation Nodes for the Pyramid
,”
SIAM J. Sci. Comput.
,
37
(
5
), pp.
A2151
A2170
.10.1137/141000105
40.
Solin
,
P.
,
Segeth
,
K.
, and
Dolezel
,
I.
,
2003
,
Higher-Order Finite Element Methods
,
Chapman and Hall/CRC
, Boca Raton, FL.
41.
Lyness
,
J. N.
, and
Jespersen
,
D.
,
1975
, “
Moderate Degree Symmetric Quadrature Rules for the Triangle
,”
IMA J. Appl. Math.
,
15
(
1
), pp.
19
32
.10.1093/imamat/15.1.19
42.
Dunavant
,
D. A.
,
1985
, “
High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle
,”
Int. J. Numer. Methods Eng.
,
21
(
6
), pp.
1129
1148
.10.1002/nme.1620210612
43.
Keast
,
P.
,
1986
, “
Moderate-Degree Tetrahedral Quadrature Formulas
,”
Comput. Methods Appl. Mech. Eng.
,
55
(
3
), pp.
339
348
.10.1016/0045-7825(86)90059-9
44.
Stroud
,
A.
, and
Secrest
,
D.
,
1966
,
Gaussian Quadrature Formulas
,
Prentice Hall
, Hoboken, NJ.
45.
Burkardt
,
J.
,
2020
, “
Generate a Quadrature Rule for a Pyramid
,” Florida State University, Tallahassee, FL, accessed Feb. 5, 2024, https://people.sc.fsu.edu/~jburkardt/f_src/pyramid_rule/pyramid_rule.html
46.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
47.
van Leer
,
B.
,
1982
, “
Flux-Vector Splitting for the Euler Equations
,”
Lecture Notes in Physics
,
Springer
,
Berlin, Germany
, pp.
507
512
.
48.
Liou
,
M.-S.
, and
Steffen
,
C. J.
,
1993
, “
A New Flux Splitting Scheme
,”
J. Comput. Phys.
,
107
(
1
), pp.
23
39
.10.1006/jcph.1993.1122
49.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1996.0256
50.
Steger
,
J. L.
, and
Warming
,
R.
,
1981
, “
Flux Vector Splitting of the Inviscid Gasdynamic Equations With Application to Finite Difference Methods
,”
J. Comput. Phys.
,
40
(
2
), pp.
263
293
.10.1016/0021-9991(81)90210-2
51.
Buning
,
P.
, and
Steger
,
J.
,
1982
, “
Solution of the Two-Dimensional Euler Equations With Generalized Coordinate Transformation Using Flux Vector Splitting
,”
AIAA
Paper No. 82-971. 10.1115/82-971
52.
Nishikawa
,
H.
,
2010
, “
Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes
,”
AIAA
Paper No. 2010-5093. 10.2514/6.2010-5093
53.
Jalali
,
A.
,
Sharbatdar
,
M.
, and
Ollivier-Gooch
,
C.
,
2014
, “
Accuracy Analysis of Unstructured Finite Volume Discretization Schemes for Diffusive Fluxes
,”
Comput. Fluids
,
101
, pp.
220
232
.10.1016/j.compfluid.2014.06.008
54.
Hoshyari
,
S.
,
2017
, “
A Higher-Order Unstructured Finite Volume Solver for Three-Dimensional Compressible Flows
,” Master's thesis,
University of British Columbia
,
Vancouver, BC, Canada
.
55.
Tyson
,
W.
,
2018
, “
On Numerical Error Estimation for the Finite Volume Method With an Application to CFD
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
56.
Roy
,
C. J.
,
Nelson
,
C. C.
,
Smith
,
T. M.
, and
Ober
,
C. C.
,
2004
, “
Verification of Euler/Navier-Stokes Codes Using the Method of Manufactured Solutions
,”
Int. J. Numer. Methods Fluids
,
44
(
6
), pp.
599
620
.10.1002/fld.660
57.
Steinberg
,
S.
, and
Roache
,
P. J.
,
1985
, “
Symbolic Manipulation and Computational Fluid Dynamics
,”
J. Comput. Phys.
,
57
(
2
), pp.
251
284
.10.1016/0021-9991(85)90045-2
58.
Roache
,
P. J.
,
2002
, “
Code Verification by the Method of Manufactured Solutions
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
4
10
.10.1115/1.1436090
59.
Bond
,
R.
,
Ober
,
C.
,
Knupp
,
P.
, and
Bova
,
S.
,
2007
, “
Manufactured Solution for Computational Fluid Dynamics Boundary Condition Verification
,”
AIAA J.
,
45
(
9
), pp.
2224
2236
.10.2514/1.28099
60.
Choudhary
,
A.
,
2014
, “
Verification of Compressible and Incompressible Computational Fluid Dynamics Codes and Residual-Based Mesh Adaptation
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
61.
Derlaga
,
J. M.
,
2015
, “
Application of Improved Truncation Error Estimation Techniques to Adjoint Based Error Estimation and Grid Adaptation
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
62.
Grier
,
B.
,
Figliola
,
R.
,
Alyanak
,
E.
, and
Camberos
,
J.
,
2015
, “
Discontinuous Solutions Using the Method of Manufactured Solutions on Finite Volume Solvers
,”
AIAA J.
,
53
(
8
), pp.
2369
2378
.10.2514/1.J053725
63.
Schetz
,
J. A.
, and
Bowersox
,
R. D.
,
2011
,
Boundary Layer Analysis
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
64.
Masatsuka
,
K.
,
2013
,
I Do Like CFD, Vol. 1, Governing Equations and Exact Solutions
, 2nd ed.,
Cradle
, Osaka, Japan.
65.
Naddei
,
F.
,
de la Llave Plata
,
M.
,
Couaillier
,
V.
, and
Coquel
,
F.
,
2019
, “
A Comparison of Refinement Indicators for p-Adaptive Simulations of Steady and Unsteady Flows Using Discontinuous Galerkin Methods
,”
J. Comput. Phys.
,
376
, pp.
508
533
.10.1016/j.jcp.2018.09.045
You do not currently have access to this content.