Abstract

Computational Fluid Dynamics (CFD) has gained significant utility in the analysis of diverse fluid flow scenarios, thanks to advances in computational power. Accurate error estimation techniques are crucial to ensure the reliability of CFD simulations, as errors can lead to misleading conclusions. This study focuses on the estimation of discretization errors in time-dependent simulations, building upon prior work addressing steady-state problems Wang et al. (2020, “Error Transport Equation Implementation in the Sensei CFD Code,” AIAA Paper No. 2020-1047). In this research, we employ unsteady error transport equations (ETE) to generate localized discretization error estimates within the framework of the finite volume CFD code SENSEI. For steady-state problems, the ETE only need to be solved once after the solution has converged, whereas the unsteady ETE need to be co-advanced with the primal solve. To enhance efficiency, we adopt a one-sided temporal stencil and develop a modified iterative correction process tailored to the unsteady ETE. The time-marching schemes utilized encompass second-order accurate singly diagonally implicit Runge–Kutta (SDIRK) and second-order backward differentiation formula (BDF2), both being implicit. To rigorously assess the accuracy of our error estimates, all test cases feature known analytical solutions, facilitating order-of-accuracy evaluations. Two test cases are considered: the 2D convected vortex for inviscid flow and a cross-term sinusoidal (CTS) manufactured solution for viscous flow. Results indicate higher-order convergence rates for the 2D convected vortex test case even when iterative correction is not applied, with similar observations in the CTS case, albeit not at the finest grid levels. Although the current implementation of iterative correction exhibits lower stability compared to the primal solve, it generally enhances the discretization error estimate. Notably, after iterative correction, the discretization error estimate for the unsteady ETE achieves higher-order accuracy across all grid levels in the 2D CTS manufactured solution.

References

1.
Derlaga
,
J. M.
,
Phillips
,
T.
, and
Roy
,
C. J.
,
2013
, “
Sensei Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development
,”
AIAA
Paper No. 2013-2450.10.2514/6.2013-2450
2.
Jackson
,
C. W.
,
Tyson
,
W. C.
, and
Roy
,
C. J.
,
2019
, “
Turbulence Model Implementation and Verification in the Sensei CFD Code
,”
AIAA
Paper No. 2019-2331.10.2514/6.2019-2331
3.
Xue
,
W.
,
Wang
,
H.
, and
Roy
,
C. J.
,
2020
, “
Code Verification for Turbulence Modeling in Parallel Sensei Accelerated With MPI
,”
AIAA
Paper No. 2020-0347.10.2514/6.2020-0347
4.
Rumsey
,
C.
, “
Turbulence Modeling Resource
,” accessed Aug. 20, 2021, https://turbmodels.larc.nasa.gov/
5.
Bartels
,
R. E.
,
Rumsey
,
C. L.
, and
Biedron
,
R. T.
,
2006
, “
Cfl3d Version 6.4-General Usage and Aeroelastic Analysis
,” NASA Technical Reports Server (NTRS), accessed Jan. 30, 2024, https://ntrs.nasa.gov/citations/20060012145
6.
Biedron
,
R. T.
,
Carlson
,
J.-R.
,
Derlaga
,
J. M.
,
Gnoffo
,
P. A.
,
Hammond
,
D. P.
,
Jones
,
W. T.
,
Kleb
,
B.
, et al.,
2019
, “
FUN3D Manual: 13.5
,” NASA Technical Reports Server (NTRS), accessed Jan. 30, 2024, https://ntrs.nasa.gov/citations/20060012145
7.
Wang
,
H.
,
Xue
,
W.
, and
Roy
,
C. J.
,
2020
, “
Error Transport Equation Implementation in the Sensei CFD Code
,”
AIAA
Paper No. 2020-1047.10.2514/6.2020-1047
8.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London. Ser. A
,
210
(
459–470
), pp.
307
357
.10.1098/rsta.1911.0009
9.
Giles
,
M. B.
,
Pierce
,
N.
, and
Süli
,
E.
,
2004
, “
Progress in Adjoint Error Correction for Integral Functionals
,”
Comput. Visualization Sci.
,
6
(
2–3
), pp.
113
121
.10.1007/s00791-003-0115-y
10.
Fidkowski
,
K. J.
, and
Darmofal
,
D. L.
,
2011
, “
Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics
,”
AIAA J.
,
49
(
4
), pp.
673
694
.10.2514/1.J050073
11.
Tyson
,
W. C.
,
2018
, “
On Numerical Error Estimation for the Finite Volume Method With an Application to Computational Fluid Dynamics
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
.
12.
Tyson
,
W. C.
, and
Roy
,
C. J.
,
2019
, “
A Higher-Order Error Estimation Framework for Finite Volume CFD
,”
J. Comput. Phys.
,
394
, pp.
632
657
.10.1016/j.jcp.2019.06.017
13.
Tyson
,
W. C.
,
Yan
,
G. K.
,
Roy
,
C. J.
, and
Ollivier-Gooch
,
C. F.
,
2019
, “
Relinearization of the Error Transport Equations for Arbitrarily High-Order Error Estimates
,”
J. Comput. Phys.
,
397
, p.
108867
.10.1016/j.jcp.2019.108867
14.
Phillips
,
T. S.
,
Derlaga
,
J. M.
,
Roy
,
C. J.
, and
Borggaard
,
J.
,
2017
, “
Error Transport Equation Boundary Conditions for the Euler and Navier–Stokes Equations
,”
J. Comput. Phys.
,
330
, pp.
46
64
.10.1016/j.jcp.2016.11.002
15.
Celik
,
I. B.
, and
Parsons
,
D. R.
, III
,
2017
, “
Prediction of Discretization Error Using the Error Transport Equation
,”
J. Comput. Phys.
,
339
, pp.
96
125
.10.1016/j.jcp.2017.02.058
16.
Yan
,
K. K. G.
,
2018
, “
Numerical Estimation of Discretization Error on Unstructured Meshes
,” Ph.D. thesis,
University of British Columbia
.
17.
Gautham
,
T.
,
Wang
,
H.
, and
Roy
,
C. J.
,
2020
, “
Residual-Based Discretization Error Estimation for Unsteady Flows
,”
AIAA
Paper No. 2020-0344.10.2514/6.2020-0344
18.
Yan
,
G.
, and
Ollivier-Gooch
,
C.
,
2017
, “
Towards Higher Order Discretization Error Estimation by Error Transport Using Unstructured Finite Volume Methods for Unsteady Problems
,”
Comput. Fluids
,
154
, pp.
245
255
.10.1016/j.compfluid.2017.06.012
19.
Yan
,
G.
, and
Ollivier-Gooch
,
C.
,
2018
, “
Applications of the Unsteady Error Transport Equation on Unstructured Meshes
,”
AIAA J.
,
56
(
11
), pp.
4463
4473
.10.2514/1.J057024
20.
Wang
,
H.
,
Xue
,
W.
, and
Roy
,
C. J.
,
2021
, “
Discretization Error Estimation Using the Unsteady Error Transport Equations
,”
AIAA
Paper No. 2021-1327.10.2514/6.2021-1327
21.
Roy
,
C.
,
2009
, “
Strategies for Driving Mesh Adaptation in CFD
,”
AIAA
Paper No. 2009-1302.10.2514/6.2009-1302
22.
Ollivier-Gooch
,
C.
,
Nejat
,
A.
, and
Michalak
,
K.
,
2009
, “
Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations
,”
AIAA J.
,
47
(
9
), pp.
2105
2120
.10.2514/1.40585
23.
Yan
,
G. K.
, and
Ollivier-Gooch
,
C.
,
2017
, “
On Efficiently Obtaining Higher Order Accurate Discretization Error Estimates for Unstructured Finite Volume Methods Using the Error Transport Equation
,”
ASME J. Verific., Validation Uncertainty Quantif.
,
2
(
4
), p.
041003
.10.1115/1.4039188
24.
Banks
,
J.
,
Hittinger
,
J.
,
Connors
,
J.
, and
Woodward
,
C.
,
2012
, “
Numerical Error Estimation for Nonlinear Hyperbolic PDEs Via Nonlinear Error Transport
,”
Comput. Methods Appl. Mech. Eng.
,
213–216
, pp.
1
15
.10.1016/j.cma.2011.11.021
25.
Ferracina
,
L.
, and
Spijker
,
M.
,
2008
, “
Strong Stability of Singly-Diagonally-Implicit Runge–Kutta Methods
,”
Appl. Numer. Math.
,
58
(
11
), pp.
1675
1686
.10.1016/j.apnum.2007.10.004
26.
Yee
,
H. C.
,
Sandham
,
N. D.
, and
Djomehri
,
M. J.
,
1999
, “
Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters
,”
J. Comput. Phys.
,
150
(
1
), pp.
199
238
.10.1006/jcph.1998.6177
You do not currently have access to this content.