Abstract

Validation exercises for computational models of materials under impact must contend with sparse experimental data as well as with uncertainties due to microstructural stochasticity and variabilities in thermomechanical properties of the material. This paper develops statistical methods for determining confidence levels for verification and validation of computational models subject to aleatoric and epistemic uncertainties and sparse stochastic experimental datasets. To demonstrate the method, the classical problem of Taylor impact of a copper bar is simulated. Ensembles of simulations are performed to cover the range of variabilities in the material properties of copper, specifically the nominal yield strength A, the hardening constant B, and the hardening exponent n in a Johnson–Cook material model. To quantify uncertainties in the simulation models, we construct probability density functions (PDFs) of the ratios of the quantities of interest, viz., the final bar diameter Df to the original diameter D0 and the final length Lf to the original length L0. The uncertainties in the experimental data are quantified by constructing target output distributions for these QoIs (Df/D0 and Lf/L0) from the sparse experimental results reported in literature. The simulation output and the experimental output distributions are compared to compute two metrics, viz., the median of the model prediction error and the model confidence at user-specified error level. It is shown that the median is lower and the model confidence is higher for Lf/L0 compared to Df/D0, implying that the simulation models predict the final length of the bar more accurately than the diameter. The calculated confidence levels are shown to be consistent with expectations from the physics of the impact problem and the assumptions in the computational model. Thus, this paper develops and demonstrates physically meaningful metrics for validating simulation models using limited stochastic experimental datasets. The tools and techniques developed in this work can be used for validating a wide range of computational models operating under input uncertainties and sparse experimental datasets.

References

1.
Henderson
,
C. N.
,
Monteith
,
J.
,
Solis-Ramos
,
E.
,
Godard
,
R.
,
Predecki
,
P.
, and
Kumosa
,
M.
,
2020
, “
Impact Protection of Borosilicate Glass Plates With Elastomeric Coatings in Drop Tower Tests
,”
Int. J. Impact Eng.
,
137
, p.
103460
.10.1016/j.ijimpeng.2019.103460
2.
Chen
,
W. W.
, and
Song
,
B.
,
2010
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
,
Springer Science & Business Media
, Berlin.
3.
Paulson
,
S. C.
,
Roberts
,
Z. A.
,
Sorensen
,
C. J.
,
Kerschen
,
N. E.
,
Harr
,
M. H.
,
Parab
,
N. D.
,
Sun
,
T.
,
Fezzaa
,
K.
,
Son
,
S. F.
, and
Chen
,
W. W.
,
2020
, “
Observation of Damage During Dynamic Compression of Production and Low-Defect HMX Crystals in Sylgard® Binder Using X-Ray Phase Contrast Imaging
,”
J. Dyn. Behav. Mater.
,
6
(
1
), pp.
34
11
.10.1007/s40870-019-00225-8
4.
Tekalur
,
S. A.
,
Shukla
,
A.
, and
Shivakumar
,
K.
,
2008
, “
Blast Resistance of Polyurea Based Layered Composite Materials
,”
Compos. Struct.
,
84
(
3
), pp.
271
281
.10.1016/j.compstruct.2007.08.008
5.
Wang
,
E.
, and
Shukla
,
A.
,
2010
, “
Analytical and Experimental Evaluation of Energies During Shock Wave Loading
,”
Int. J. Impact Eng.
,
37
(
12
), pp.
1188
1196
.10.1016/j.ijimpeng.2010.07.003
6.
Hume
,
C.
,
2018
, “
About Material Genome Initiative
”.
7.
Hao
,
Q.
,
Xu
,
D.
,
Lu
,
N.
, and
Zhao
,
H.
,
2016
, “
High-Throughput Z T Predictions of Nanoporous Bulk Materials as Next-Generation Thermoelectric Materials: A Material Genome Approach
,”
Phys. Rev. B
,
93
(
20
), p.
205206
.10.1103/PhysRevB.93.205206
8.
Cinnamon
,
J. D.
,
Palazotto
,
A. N.
, and
Szmerekovsky
,
A.
,
2008
, “
Further Refinement and Validation of Material Models for Hypervelocity Gouging Impacts
,”
AIAA J.
,
46
(
2
), pp.
317
327
.10.2514/1.25035
9.
Williams
,
K.
,
McClennan
,
S.
,
Durocher
,
R.
,
St-Jean
,
B.
, and
Tremblay
,
J.
,
2002
, “
Validation of a Loading Model for Simulating Blast Mine Effects on Armoured Vehicles
,”
Seventh International LS-DYNA Users Conference
.
10.
Ofengeim
,
D. K.
, and
Drikakis
,
D.
,
1997
, “
Simulation of Blast Wave Propagation Over a Cylinder
,”
Shock Waves
,
7
(
5
), pp.
305
317
.10.1007/s001930050085
11.
Brünig
,
M.
, and
Driemeier
,
L.
,
2007
, “
Numerical Simulation of Taylor Impact Tests
,”
Int. J. Plast.
,
23
(
12
), pp.
1979
2003
.10.1016/j.ijplas.2007.01.012
12.
Rai
,
N.
,
Kapahi
,
A.
, and
Udaykumar
,
H.
,
2014
, “
Treatment of Contact Separation in Eulerian High‐Speed Multimaterial Dynamic Simulations
,”
Int. J. Numer. Methods Eng.
,
100
(
11
), pp.
793
813
.10.1002/nme.4760
13.
Chakraborty
,
S.
,
Islam
,
M. R. I.
,
Shaw
,
A.
,
Ramachandra
,
L. S.
, and
Reid
,
S. R.
,
2017
, “
A Computational Framework for Modelling Impact Induced Damage in Ceramic and Ceramic-Metal Composite Structures
,”
Compos. Struct.
,
164
, pp.
263
276
.10.1016/j.compstruct.2016.12.064
14.
Banerjee
,
B.
,
2005
, “
An Evaluation of Plastic Flow Stress Models for the Simulation of High-Temperature and High-Strain-Rate Deformation of Metals
,” arXiv preprint cond-mat/0512466.
15.
Andrade
,
U.
,
Meyers
,
M.
, and
Chokshi
,
A.
,
1994
, “
Constitutive Description of Work-and Shock-Hardened Copper
,”
Scr. Metal. Mater.
,
30
(
7
), pp.
933
938
.10.1016/0956-716X(94)90418-9
16.
House
,
J. W.
,
1989
,
Taylor Impact Testing
,
Kentucky University
,
Lexington, KY
.
17.
Hughes, K., Balachandar, S., Kim, N. H., Park, C., Haftka, R., Diggs, A., Littrell, D. M., and Darr, J.
,
2018
, “
Forensic Uncertainty Quantification for Experiments on the Explosively Driven Motion of Particles
,”
ASME J. Verif. Valid. Uncert.
,
3
(
4
), p. 041004.10.1115/1.4043478
18.
Park, C., Matthew, J., Kim, N. H., and Haftka, R. T.,
2018
, “
Epistemic Uncertainty Stemming From Measurement Processing—A Case Study of Multiphase Shock Tube Experiments
,”
ASME J. Verif. Valid. Uncert.,
3
(
4
),p.
041001
.10.1115/1.4042814
19.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
Modeling Uncertainty in Steady State Diffusion Problems Via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
43
), pp.
4927
4948
.10.1016/S0045-7825(02)00421-8
20.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification in Prediction of Material Properties During Additive Manufacturing
,”
Scr. Mater.
,
135
, pp.
135
140
.10.1016/j.scriptamat.2016.10.014
21.
Xiu
,
D.
, and
Tartakovsky
,
D. M.
,
2004
, “
A Two-Scale Nonperturbative Approach to Uncertainty Analysis of Diffusion in Random Composites
,”
Multiscale Model. Simul.
,
2
(
4
), pp.
662
674
.10.1137/03060268X
22.
Rokneddin, K., Ghosh, J., Dueñas-Osorio, L., and Padgett, J. E.,
2015
, “
Uncertainty Propagation in Seismic Reliability Evaluation of Aging Transportation Networks
,”
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
, Vancouver, BC, Canada, July 12–15.https://www.researchgate.net/publication/281179216_Uncertainty_Propagation_in_Seismic_Reliability_Evaluation_of_Aging_Transportation_Networks
23.
Hanson
,
K.
, and
Hemez
,
F.
,
2003
, “
Uncertainty Quantification of Simulation Codes Based on Experimental Data
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.9103&rep=rep1&type=pdf
24.
Lee
,
S.
,
Sen
,
O.
,
Rai
,
N. K.
,
Gaul
,
N. J.
,
Choi
,
K. K.
, and
Udaykumar
,
H. S.
,
2019
, “
Effects of Parametric Uncertainty on Multi-Scale Model Predictions of Shock Response of a Pressed Energetic Material
,”
J. Appl. Phys.
,
125
(
23
), p.
235104
.10.1063/1.5098955
25.
Roy
,
S.
, “
Modeling Meso-Scale Energy Localization in Shocked HMX, Part II: Machine Learned Surrogate Models for Void Interactions and Void Shape Effects
,”
Phys. Rev. Fluids
(Under Review).
26.
Massoni
,
J.
,
Saurel
,
R.
,
Baudin
,
G.
, and
Demol
,
G.
,
1999
, “
A Mechanistic Model for Shock Initiation of Solid Explosives
,”
Phys. Fluids (1994-Present)
,
11
(
3
), pp.
710
736
.10.1063/1.869941
27.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Model Bias Characterization in the Design Space Under Uncertainty
,”
Int. J. Performability Eng.,
9
(
4
), pp.
433
444
.https://www.researchgate.net/publication/257992790_Model_bias_characterization_in_the_design_space_under_uncertainty
28.
Pan
,
H.
,
Xi
,
Z.
, and
Yang
,
R.-J.
,.
2016
, “
Model Uncertainty Approximation Using a Copula-Based Approach for Reliability Based Design Optimization
,”
Struct. Multidiscipl. Optim.,
54
(
6
), pp.
1543
1556
.10.1007/s00158-016-1530-2
29.
Kim
,
S.
,
Miller
,
C.
,
Horie
,
Y.
,
Molek
,
C.
,
Welle
,
E.
, and
Zhou
,
M.
,
2016
, “
Computational Prediction of Probabilistic Ignition Threshold of Pressed Granular Octahydro-1, 3, 5, 7-Tetranitro-1, 2, 3, 5-Tetrazocine (HMX) Under Shock Loading
,”
J. Appl. Phys.
,
120
(
11
), p.
115902
.10.1063/1.4962211
30.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.10.1016/j.cma.2007.07.030
31.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
32.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
, pp.
1
11
.10.1016/j.ress.2014.02.002
33.
He
,
Q.
,
2019
, “
Model Validation Based on Probability Boxes Under Mixed Uncertainties
,”
Adv. Mech. Eng.
,
11
(
5
), epub.10.1177/1687814019847411
34.
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Mourelatos
,
Z.
,
Yang
,
R. J.
,
Brudnak
,
M.
, and
Gorsich
,
D.
,
2013
, “
Towards a Comprehensive Framework for Simulation-Based Design Validation of Vehicle Systems
,”
Int. J Vehicle Des.,
61
(
1/2/3/4
), pp.
233
248
.
35.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H. Z.
,
2011
, “
Toward a Better Understanding Model Validation Metrics
,”
J. Mech. Des.,
133
(
7
), p. 071005.
36.
Lee
,
G.
,
Kim
,
W.
,
Oh
,
H.
,
Youn
,
B. D.
, and
Kim
,
N. H.
,
2019
, “
Review of Statistical Model Calibration and Validation—From the Perspective of Uncertainty Structures
,”
Struct. Multidiscipl. Optim.
, 60, pp.
1619
1644
.10.1007/s00158-019-02270-2
37.
Gustavsen
,
R. L.
,
Sheffield
,
S. A.
, and
Alcon
,
R. R.
,
2006
, “
Measurements of Shock Initiation in the Tri-Amino-Tri-Nitro-Benzene Based Explosive PBX 9502: Wave Forms From Embedded Gauges and Comparison of Four Different Material Lots
,”
J. Appl. Phys.
,
99
(
11
), p.
114907
.10.1063/1.2195191
38.
Fensin
,
S. J.
,
Jones
,
D. R.
,
Walker
,
E. K.
,
Farrow
,
A.
,
Imhoff
,
S. D.
,
Clarke
,
K.
,
Trujillo
,
C. P.
,
Martinez
,
D. T.
,
Gray
,
G. T.
, and
Cerreta
,
E. K.
,
2016
, “
The Effect of Distribution of Second Phase on Dynamic Damage
,”
J. Appl. Phys.
,
120
(
8
), p.
085901
.10.1063/1.4961041
39.
De Brauer
,
A.
, and
Udaykumar
,
H.
,
2017
, “
Compaction of Ni-Al Powders in a Sharp Interface Framework
,”
APS Shock Compression of Condensed Matter Meeting Abstracts
.
40.
Gama
,
B. A.
,
Bogetti
,
T. A.
,
Fink
,
B. K.
,
Yu
,
C.-J.
,
Dennis Claar
,
T.
,
Eifert
,
H. H.
, and
Gillespie Jr
,
J. W.
,
2001
, “
Aluminum Foam Integral Armor: A New Dimension in Armor Design
,”
Compos. Struct.
,
52
(
3–4
), pp.
381
395
.10.1016/S0263-8223(01)00029-0
41.
Moon
,
M.-Y.
,
Choi
,
K.
, and
Lamb
,
D.
,
2019
, “
Target Output Distribution and Distribution of Bias for Statistical Model Validation Given a Limited Number of Test Data
,”
Struct. Multidiscip. Optim.
,
60
(
4
), pp.
1327
1353
.10.1007/s00158-019-02338-z
42.
Rai
,
N.
, and Udaykumar, H. S.,
2013
, “
Frictionless Contact Algorithm for Eulerian High Speed Multimaterial Dynamic Simulations
,” 21st AIAA Computational Fluid Dynamics Conference, p.
2961
.
43.
Kapahi
,
A.
,
Mousel
,
J.
,
Sambasivan
,
S.
, and
Udaykumar
,
H. S.
,
2013
, “
Parallel, Sharp Interface Eulerian Approach to High-Speed Multi-Material Flows
,”
Comput. Fluids
,
83
, pp.
144
156
.10.1016/j.compfluid.2012.06.024
44.
Kapahi
,
A.
,
Sambasivan
,
S.
, and
Udaykumar
,
H.
,
2013
, “
A Three-Dimensional Sharp Interface Cartesian Grid Method for Solving High Speed Multi-Material Impact, Penetration and Fragmentation Problems
,”
J. Comput. Phys.
,
241
, pp.
308
332
.10.1016/j.jcp.2013.01.007
45.
Sambasivan
,
S.
,
Kapahi
,
A.
, and
Udaykumar
,
H. S.
,
2013
, “
Simulation of High Speed Impact, Penetration and Fragmentation Problems on Locally Refined Cartesian Grids
,”
J. Comput. Phys.
,
235
, pp.
334
370
.10.1016/j.jcp.2012.10.031
46.
Sambasivan
,
S. K.
, and
UdayKumar
,
H. S.
,
2009
, “
Ghost Fluid Method for Strong Shock Interactions—Part 2: Immersed Solid Boundaries
,”
AIAA J.
,
47
(
12
), pp.
2923
2937
.10.2514/1.43153
47.
Johnson
,
G. R.
, and
Holmquist
,
T. J.
,
1988
, “
Evaluation of Cylinder‐Impact Test Data for Constitutive Model Constants
,”
J. Appl. Phys.
,
64
(
8
), pp.
3901
3910
.10.1063/1.341344
48.
Johnson
,
G.
, and
Cook
,
W.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
49.
Holmquist
,
T.
, and
Johnson
,
G.
,
1991
, “
Determination of Constants and Comparison of Results for Various Constitutive Models
,”
J. Phys. IV
,
01
(
C3
), pp.
853
860
.10.1051/jp4:19913119
50.
Allen
,
D.
,
Rule
,
W.
, and
Jones
,
S.
,
1997
, “
Optimizing Material Strength Constants Numerically Extracted From Taylor Impact Data
,”
Exp. Mech.
,
37
(
3
), pp.
333
338
.10.1007/BF02317427
51.
Batra
,
R.
, and
Kim
,
C.
,
1992
, “
Analysis of Shear Banding in Twelve Materials
,”
Int. J. Plast.
,
8
(
4
), pp.
425
452
.10.1016/0749-6419(92)90058-K
52.
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N. J.
,
Lee
,
I.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2016
, “
Conservative Reliability-Based Design Optimization Method With Insufficient Input Data
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1609
1630
.10.1007/s00158-016-1492-4
53.
Moon
,
M.-Y.
,
Cho
,
H.
,
Choi
,
K. K.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2018
, “
Confidence-Based Reliability Assessment Considering Limited Numbers of Both Input and Output Test Data
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
2027
2043
.10.1007/s00158-018-1900-z
54.
Noh
,
Y.
,
Choi
,
K. K.
,
Lee
,
I.
,
Gorsich
,
D.
, and
Lamb
,
D.
,
2011
, “
Reliability-Based Design Optimization With Confidence Level Under Input Model Uncertainty Due to Limited Test Data
,”
Struct. Multidiscip. Optim.
,
43
(
4
), pp.
443
458
.10.1007/s00158-011-0620-4
55.
Moon
,
M.-Y.
,
Choi
,
K. K.
,
Gaul
,
N.
, and
Lamb
,
D.
,
2019
, “
Treating Epistemic Uncertainty Using Bootstrapping Selection of Input Distribution Model for Confidence-Based Reliability Assessment
,”
ASME J. Mech. Des.
,
141
(
3
), p. 031402.10.1115/1.4042149
56.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
,
Springer
,
New York
.
57.
Shu
,
C.-W.
, and
Osher
,
S.
,
1989
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II
,”
J. Comput. Phys.
,
83
(
1
), pp.
32
78
.10.1016/0021-9991(89)90222-2
58.
Sethian
,
J. A.
,
1999
, “
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,”
Vol.
3, Cambridge University Press, Cambridge, UK.
59.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
(
2
), pp.
457
492
.10.1006/jcph.1999.6236
60.
Kapahi
,
A.
, and
Udaykumar
,
H.
,
2015
, “
Three-Dimensional Simulations of Dynamics of Void Collapse in Energetic Materials
,”
Shock Waves
,
25
(
2
), pp.
177
187
.10.1007/s00193-015-0548-5
61.
Rai
,
N. K.
,
Schmidt
,
M. J.
, and
Udaykumar
,
H. S.
,
2017
, “
High-Resolution Simulations Cylindrical Void Collapse Energetic Materials: Effect of Primary Secondary Collapse Initiation Thresholds
,”
Phys. Rev. Fluids,
2
(
4
), p.
043202
.10.1103/PhysRevFluids.2.043202
62.
Rai
,
N. K.
, and
Udaykumar
,
H. S.
,
2015
, “
Mesoscale Simulation of Reactive Pressed Energetic Materials Under Shock Loading
,”
J. Appl. Phys,
118
(
24
), p.
245905
.10.1063/1.4938581
63.
Rai
,
N. K.
, and
Udaykumar
,
H. S.
,
2018
, “
Three-Dimensional Simulations Void Collapse Energetic Materials
,”
Phys. Rev. Fluids,
3
(
3
), p.
033201
.10.1103/PhysRevFluids.3.033201
64.
Zhao
,
L.
,
Choi
,
K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.10.2514/1.J051017
65.
Sen
,
O.
,
Davis
,
S.
,
Jacobs
,
G.
, and
Udaykumar
,
H. S.
,
2015
, “
Evaluation of Convergence Behavior of Metamodeling Techniques for Bridging Scales in Multi-Scale Multimaterial Simulation
,”
J. Comput. Phys.
,
294
, pp.
585
604
.10.1016/j.jcp.2015.03.043
66.
Volpi
,
S.
,
Diez
,
M.
,
Gaul
,
N. J.
,
Song
,
H.
,
Iemma
,
U.
,
Choi
,
K. K.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2015
, “
Development and Validation of a Dynamic Metamodel Based on Stochastic Radial Basis Functions and Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
347
368
.10.1007/s00158-014-1128-5
67.
Tipton
,
E.
,
2013
, “
Stratified Sampling Using Cluster Analysis: A Sample Selection Strategy for Improved Generalizations From Experiments
,”
Eval. Rev.
,
37
(
2
), pp.
109
139
.10.1177/0193841X13516324
68.
Läuter
,
H.
, and
Silverman
,
B. W.
,
1988
, “
Density Estimation for Statistics and Data Analysis. Chapman & Hall, London–New York 1986, 175 pp.,£12
,”
Biomet. J.
,
30
(
7
), pp.
876
877
.10.1002/bimj.4710300745
69.
Jones
,
T. A.
,
1977
, “
A Computer Method to Calculate the Convolution of Statistical Distributions
,”
J. Int. Assoc. Math. Geol.
,
9
(
6
), pp.
635
647
.10.1007/BF02067218
70.
Chowdhury
,
F. N.
,
Kolber
,
Z. S.
, and
Barkley
,
M. D.
,
1991
, “
Monte Carlo Convolution Method for Simulation and Analysis of Fluorescence Decay Data
,”
Rev. Sci. Instr.
,
62
(
1
), pp.
47
52
.10.1063/1.1142280
71.
Gelman
,
A.
, and
Rubin
,
D. B.
,
1992
, “
Inference From Iterative Simulation Using Multiple Sequences
,”
Stat. Sci.
,
7
(
4
), pp.
457
472
.10.1214/ss/1177011136
You do not currently have access to this content.