Graphical Abstract Figure

Meridional cut of high-speed low-pressure turbine cascade with wake generator and cavity geometry

Graphical Abstract Figure

Meridional cut of high-speed low-pressure turbine cascade with wake generator and cavity geometry

Close modal

Abstract

This work investigates the unsteady interactions between incoming wakes and purge flow in a high-speed low-pressure turbine cascade tested under engine-representative conditions. Experiments were conducted in a linear cascade at outlet Mach and Reynolds numbers of 0.90 and 70,000, respectively. Unsteady wakes characterized by a reduced frequency of 0.95 are generated by cylindrical bars. Purge flow was injected at varying mass flow rates through a cavity slot to study its effect on the modulation of secondary flows. Phase-averaged measurements using a fast-response pressure probe operated in a virtual mode mapped the unsteady development of secondary flows regarding energy loss, turbulence intensity, and flow angles at the outlet. Results highlight a significant strengthening of secondary flow structures when introducing purge flow, in contrast to the weaker passage vortex observed without the cavity slot. The passage vortex was periodically suppressed in the absence of purge, while purge flow enhanced the turbulence intensity and the extent of loss fluctuations in the secondary flow region. This study provides insights into secondary flow modulation and the complex interactions between purge flow and unsteady wakes.

References

1.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
145
153
.
2.
Torre
,
D.
,
García-Valdecasas
,
G.
,
Puente
,
A.
,
Hernández
,
D.
, and
Luque
,
S.
,
2022
, “
Design and Testing of a Multi-stage Intermediate Pressure Turbine for Future Geared Turbofans
,”
ASME J. Turbomach.
,
144
(
9
), p.
091008
.
3.
Eckerle
,
W.
, and
Langston
,
L.
,
1987
, “
Horseshoe Vortex Formation Around a Cylinder
,”
ASME J. Turbomach.
,
109
(
2
), pp.
278
285
.
4.
Wang
,
H.
,
Olson
,
S.
,
Goldstein
,
R.
, and
Eckert
,
E.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
5.
Pullan
,
G.
,
Denton
,
J.
, and
Dunkley
,
M.
,
2003
, “
An Experimental and Computational Study of the Formation of a Streamwise Shed Vortex in a Turbine Stage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
291
297
.
6.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.
7.
Infantino
,
D.
,
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Phase-Locked Investigation of Secondary Flows Perturbed by Passing Wakes in a High-Lift LPT Turbine Cascade
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
,
p. V02CT44A008
.
8.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2012
, “
Profile and Secondary Flow Losses in a High-Lift LPT Blade Cascade at Different Reynolds Numbers Under Steady and Unsteady Inflow Conditions
,”
J. Thermal Sci.
,
21
(
6
), pp.
483
491
.
9.
Volino
,
R. J.
,
Galvin
,
C. D.
, and
Ibrahim
,
M. B.
,
2013
, “
Effects of Periodic Unsteadiness on Secondary Flows in High Pressure Turbine Passages
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
,
p. V06CT42A042
.
10.
Cui
,
J.
, and
Tucker
,
P.
,
2017
, “
Numerical Study of Purge and Secondary Flows in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
139
(
2
), p.
021007
.
11.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), p.
091010
.
12.
Schubert
,
T.
,
Kožulović
,
D.
, and
Bitter
,
M.
,
2024
, “
Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 1: Flow Field Investigations With Phase-Locked Particle Image Velocimetry
,”
Aerospace
,
11
(
5
), p.
403
.
13.
Schubert
,
T.
,
Kožulović
,
D.
, and
Bitter
,
M.
,
2024
, “
Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 2: Unsteady Blade Surface Measurements Using Pressure-Sensitive Paint
,”
Aerospace
,
11
(
5
), p.
404
.
14.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
,
2003
, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
127
(
4
), pp.
649
658
.
15.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
16.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2010
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.
17.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
18.
Schreiner
,
B. D. J.
,
Wilson
,
M.
,
Li
,
Y. S.
, and
Sangan
,
C. M.
,
2020
, “
Effect of Purge on the Secondary Flow-Field of a Gas Turbine Blade-Row
,”
ASME J. Turbomach.
,
142
(
10
), p.
101006
.
19.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
20.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Purge Flow and Interface Gap Geometry Influence on the Aero-Thermal Performance of a Rotor Blade Cascade
,”
Int. J. Heat Fluid Flow
,
44
, pp.
563
575
.
21.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vázquez
,
R.
,
2008
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
.
22.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
,
2000
, “
Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine: Part I — Experimental and Numerical Investigation
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
,
p. V001T03A111
.
23.
Cherry
,
D.
,
Wadia
,
A.
,
Beacock
,
R.
, and
Subramanian
,
M.
,
2005
, “
Analytical Investigation of a Low Pressure Turbine With and Without Flowpath Endwall Gaps, Seals and Clearance Features
,”
ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
Reno, NV
,
June 6–9
, pp.
1099
1105
.
24.
Macisaac
,
G.D.
,
Sjolander
,
S.A.
,
Praisner
,
T.J.
,
Grover
,
E.A.
, and
Jurek
,
R.
,
2013
, “
Effects of Simplified Platform Overlap and Cavity Geometry on the Endwall Flow: Measurements and Computations in a Low-Speed Linear Turbine Cascade
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
,
p. V06AT36A035
.
25.
Lavagnoli
,
S.
,
Lopes
,
G.
,
Simonassi
,
L.
, and
Torre
,
A. F. M.
,
2023
, “
SPLEEN – High Speed Turbine Cascade – Test Case Database
,”
Zenedo
.
26.
Simonassi
,
L.
,
Lopes
,
G.
,
Gendebien
,
S.
,
Torre
,
A.F.M.
,
Patinios
,
M.
,
Lavagnoli
,
S.
,
Zeller
,
N.
, and
Pintat
,
L.
,
2022
, “
An Experimental Test Case for Transonic Low-Pressure Turbines – Part I: Rig Design, Instrumentation and Experimental Methodology
,”
ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, Netherlands
,
June 13–17
,
p. V10BT30A012
.
27.
Pfeil
,
H.
,
Herbst
,
R.
, and
Schröder
,
T.
,
1983
, “
Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
J. Eng. Power
,
105
(
1
), pp.
130
137
.
28.
Lopes
,
G.
,
Simonassi
,
L.
, and
Lavagnoli
,
S.
,
2023
, “
Time-Averaged Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes
,”
ASME J. Turbomach.
,
146
(
2
), p.
021008
.
29.
Treaster
,
A.
, and
Yocum
,
A.
,
1978
, “The Calibration and Application of Five-Hole Probes,”
Pennsylvania State University, University Park Applied Research Lab
,
PA
, Technical Report.
30.
Yasa
,
T.
, and
Paniagua
,
G.
,
2012
, “
Robust Procedure For Multi-Hole Probe Data Processing
,”
Flow Measure. Instrument.
,
26
, pp.
46
54
.
31.
Brouckaert
,
J.-F.
,
2004
, “
Development of Fast Response Aerodynamic Pressure Probes for Time-Resolved Measurements in Turbomachines
,” Ph.D. dissertation,
Université Libre De Bruxelles, von Karman Institute for Fluid Dynamics
,
Belgium
.
32.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2022
, “
Virtual four sensor fast response aerodynamic probe (FRAP®)
,”
E3S Web of Conferences
,
345
. .
id.01014
.
33.
Lenherr
,
C.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2010
, “
High Temperature Fast Response Aerodynamic Probe
,”
J. Eng. Gas. Turbines. Power.
,
133
(
1
), p.
011603
.
34.
Gaetani
,
P.
, and
Persico
,
G.
,
2020
, “
Technology Development of Fast-Response Aerodynamic Pressure Probes
,”
Int. J. Turbomachinery, Propulsion Power
,
5
(
2
), p.
6
.
35.
Abernethy
,
R.
,
Benedict
,
R.
, and
Dowdell
,
R.
,
1985
, “
ASME Measurement Uncertainty
,”
J. Fluid. Eng.
,
107
(
2
), pp.
161
164
.
36.
Wallace
,
J.
, and
Davis
,
M.
,
1996
, “
Turbulence Measurements With a Calibrated Pitot Mounted Pressure Transducer
,”
13th Symposium on Measuring Techniques in Turbomachinery
,
Zürich, Switzerland
,
Sept. 5–6
,
Paper No. 12
.
37.
Persico
,
G.
,
Gaetani
,
P.
, and
Paradiso
,
B.
,
2008
, “
Estimation of Turbulence by Single-Sensor Pressure Probes
,”
XIX Biannual Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in Cascades and Turbomachines
,
Rhode-St-Genèse, Belgium
,
Apr. 7–8
.
38.
Persico
,
G.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2010
, “
On the Capability of Fast Response Total Pressure Probes to Measure Turbulence Kinetic Energy
,”
XX Biannual Symposium on Measuring Techniques in Turbomachinery
,
Milano, Italy
,
Sept. 23–24
.
39.
Pastorino
,
G.
,
Simonassi
,
L.
,
Lopes
,
G.
,
Boufidi
,
E.
,
Fontaneto
,
F.
, and
Lavagnoli
,
S.
,
2024
, “
Measurements of Turbulence in Compressible Low-Density Flows at the Inlet of a Transonic Linear Cascade With and Without Unsteady Wakes
,”
ASME J. Turbomach.
,
146
(
7
), p.
071002
.
40.
Bear
,
P.
,
Wolff
,
M.
,
Gross
,
A.
,
Marks
,
C. R.
, and
Sondergaard
,
R.
,
2017
, “
Experimental Investigation of Total Pressure Loss Development in a Highly Loaded Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
140
(
3
), p.
031003
.
41.
Donovan
,
M. H.
,
Rumpfkeil
,
M. P.
,
Marks
,
C. R.
,
Robison
,
Z.
, and
Gross
,
A.
,
2022
, “
Low Reynolds Number Effects on the Endwall Flow Field in a High-Lift Turbine Passage
,”
ASME J. Turbomach.
,
145
(
3
), p.
031006
.
42.
Torre
,
A. F. M.
,
Patinios
,
M.
,
Lopes
,
G.
,
Simonassi
,
L.
, and
Lavagnoli
,
S.
,
2023
, “
Vane–Probe Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
145
(
6
), p.
061010
.
43.
Okada
,
M.
,
Simonassi
,
L.
,
Lopes
,
G.
, and
Lavagnoli
,
S.
,
2023
, “
Particle Image Velocimetry Measurements in a High-Speed Low-Reynolds Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031010
.
44.
Chemnitz
,
S.
, and
Niehuis
,
R.
,
2020
, “
A Comparison of Turbulence Levels From Particle Image Velocimetry and Constant Temperature Anemometry Downstream of a Low-Pressure Turbine Cascade at High-Speed Flow Conditions
,”
ASME J. Turbomach.
,
142
(
7
), p.
071008
.
45.
Perdichizzi
,
A.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
1992
, “
Reynolds Stress Distribution Downstream of a Turbine Cascade
,”
Exp. Therm. Fluid. Sci.
,
5
(
3
), pp.
338
350
.
46.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power.
,
23
(
1
), pp.
227
234
.
You do not currently have access to this content.