Graphical Abstract Figure

Surrogate model based data-driven parameter analysis: (a) Sobol total-order indices of 6 kinds of performance metrics (values are normalized in each kind of metric by the sum of all values in that kind) and (b) Shapley values of 6 kinds of performance metrics of the optimal impeller (values are normalized in each kind of metric by the sum of all absolute values in that kind and the baseline impeller is taken as the reference input)

Graphical Abstract Figure

Surrogate model based data-driven parameter analysis: (a) Sobol total-order indices of 6 kinds of performance metrics (values are normalized in each kind of metric by the sum of all values in that kind) and (b) Shapley values of 6 kinds of performance metrics of the optimal impeller (values are normalized in each kind of metric by the sum of all absolute values in that kind and the baseline impeller is taken as the reference input)

Close modal

Abstract

In recent years, we have made several improvements to the geometric parameterization method, the surrogate model method, and the sampling method, with the goal of making the traditional surrogate model-based optimization method applicable to aerodynamic optimization of hundreds of parameters with reasonable computational cost. However, increasing the number of control parameters raises two additional issues. First, the impeller geometry becomes too complex to ensure the required mechanical performance. Second, the optimization mechanism becomes difficult to understand with too many parameters. To address the first issue, this paper builds a multidisciplinary optimization platform to achieve the optimization of a large flow coefficient mixed-flow impeller under 140 control parameters, resulting in a significant improvement in both aerodynamic and mechanical performance. To address the latter, a novel machine learning interpretation tool, Shapley additive explanations (SHAP), is introduced in this paper. Using this methodology, the contribution of all 140 parameter values in the final optimal impeller to each aspect of the performance improvement is presented in this paper, providing the first in-depth understanding of the intricate mechanisms involved in the multidisciplinary optimization of hundreds of control parameters.

References

1.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Butterworth-Heinemann
,
Oxford
.
2.
Witherden
,
F. D.
, and
Jameson
,
A.
,
2017
, “
Future Directions in Computational Fluid Dynamics
,”
23rd AIAA Computational Fluid Dynamics Conference
,
Denver, CO
,
June 5–9
, AIAA, pp.
1
16
.
3.
Nielsen
,
E. J.
, and
Diskin
,
B.
,
2017
, “
High-Performance Aerodynamic Computations for Aerospace Applications
,”
Parallel Comput.
,
64
(
1
), pp.
20
32
.
4.
Pierret
,
S.
,
1999
, “
Designing Turbomachinery Blades by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm, and Navier-Stokes Equations
,” Ph.D. dissertation,
von Karman Institute for Fluid Dynamics
, Belgium.
5.
Cosentino
,
R.
,
2001
, “
Expert System for Radial Impeller Optimisation
,”
Turbomachinery: Fluid Dynamics and Thermodynamics
,
Florence, Italy
,
Mar. 20–23
, pp.
481
490
.
6.
Braembussche
,
R. A. V. D.
,
2006
, “
Optimization of Radial Impeller Geometry
,”
Des. Anal. High Speed Pumps
,
143
(
1
), pp.
1
28
.
7.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Ermini
,
M.
, and
Baldassarre
,
L.
,
2006
, “
Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique
,”
ASME J. Turbomach.
,
128
(
4
), pp.
786
797
.
8.
Qin
,
R.
,
Ju
,
Y.
,
Spence
,
S.
, and
Zhang
,
C.
,
2021
, “
Metamodel-Driven Data Mining Model to Support Three-Dimensional Design of Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
143
(
12
), p.
121013
.
9.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
.
10.
Ji
,
C.
,
Wang
,
Z.
,
Tang
,
Y.
, and
Xi
,
G.
,
2021
, “
A Flow Information-Based Prediction Model Applied to the Nonaxisymmetric Hub Optimization of a Centrifugal Impeller
,”
ASME J. Mech. Des.
,
143
(
10
), p.
103502
.
11.
Ji
,
C.
,
Wang
,
Z.
, and
Xi
,
G.
,
2022
, “
Computer 3D Vision-Aided Full-3D Optimization of a Centrifugal Impeller
,”
ASME J. Turbomach.
,
144
(
9
), p.
091011
.
12.
Ji
,
C.
,
Wang
,
Z.
, and
Xi
,
G.
,
2024
, “
Adaptive Batch Sampling Strategy for the Hundreds-Dimensional Aerodynamic Optimization of the Centrifugal Impeller
,”
ASME J. Turbomach.
,
146
(
9
), p.
091003
.
13.
Sobol’
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
,
7
(
4
), pp.
784
802
.
14.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
15.
Saltelli
,
A.
,
Annoni
,
P.
,
Azzini
,
I.
,
Campolongo
,
F.
,
Ratto
,
M.
, and
Tarantola
,
S.
,
2010
, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index
,”
Comput. Phys. Commun.
,
181
(
2
), pp.
259
270
.
16.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
17.
Rozemberczki
,
B.
,
Watson
,
L.
,
Bayer
,
P.
,
Yang
,
H.-T.
,
Kiss
,
O.
,
Nilsson
,
S.
, and
Sarkar
,
R.
,
2022
, “
The Shapley Value in Machine Learning
,”
Proceedings of the 31st International Joint Conference on Artifical Intelligence, IJCAI-ECAI 2022
,
Messe Wien, Vienna, Austria
,
July 23–29
.
18.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
,
Reno, NV.
,
Jan. 9–12
, AIAA, pp.
366
377
.
19.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
20.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.
21.
Lipovetsky
,
S.
, and
Conklin
,
M.
,
2001
, “
Analysis of Regression in Game Theory Approach
,”
Appl. Stoch. Models Bus. Ind.
,
17
(
4
), pp.
319
330
.
22.
Štrumbelj
,
E.
, and
Kononenko
,
I.
,
2014
, “
Explaining Prediction Models and Individual Predictions With Feature Contributions
,”
Knowledge Inform. Syst.
,
41
(
1
), pp.
647
665
.
23.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
Why Should I Trust You? Explaining the Predictions of Any Classifier
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, Vol. 1, pp.
1135
1144
.
24.
Shrikumar
,
A.
,
Greenside
,
P.
, and
Kundaje
,
A.
,
2017
, “
Learning Important Features Through Propagating Activation Differences
,”
Proceedings of the 34th International Conference on Machine Learning
,
Sydney, NSW, Australia
,
Aug. 6–11
, Vol. 70, pp.
3145
3153
.
25.
Datta
,
A.
,
Sen
,
S.
, and
Zick
,
Y.
,
2016
, “
Algorithmic Transparency Via Quantitative Input Influence: Theory and Experiments With Learning Systems
,”
2016 IEEE Symposium on security and privacy (SP)
,
San Jose, CA
,
May 22–26
, Vol. 1, IEEE, pp.
598
617
.
26.
Li
,
X.
,
Zhao
,
Y.
, and
Liu
,
Z.
,
2019
, “
A Novel Global Optimization Algorithm and Data-Mining Methods for Turbomachinery Design
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
581
612
.
27.
Jeong
,
S.
,
Chiba
,
K.
, and
Obayashi
,
S.
,
2005
, “
Data Mining for Aerodynamic Design Space
,”
J. Aerosp. Comput. Inform. Commun.
,
2
(
11
), pp.
452
469
.
You do not currently have access to this content.