Abstract

In this study, a novel tip winglet structure was proposed and applied to NASA Stage 37, aiming to regulate leakage flow at the rotor tip while reducing additional weight caused by installing tip winglets. A parametric design approach was employed, providing general design guidelines for the parametric modeling of tip winglets. Tip winglet configurations were determined by adjusting the extension coefficient of the pressure surface and the contraction of the suction surface. By fixing the pressure surface extension coefficient and suction surface contraction amount, the effects of these parameters on the performance of the compressor were analyzed. The results indicated that the pressure-side tip winglet effectively weakened tip leakage vortex strength, reduced interference between shock wave and tip leakage vortex, lowered leakage flowrate, and increased the axial momentum of the leakage flow, thus expanding the main flow range. As the extension coefficient of the pressure-side tip winglet increased, the low-energy fluid blockage caused by tip leakage vortex fragmentation was gradually alleviated. Additionally, the tip winglet's regulation of the upstream rotor flow field reduced stator suction surface separation, thereby enhancing compressor efficiency. A moderate contraction of the tip winglet's suction surface improved the stabilizing effect of the tip winglet, whereas excessive contraction exacerbated suction surface separation. The pressure-side tip winglet configuration, with an extension coefficient of 6 and a suction surface contraction of 30%, increased the compressor's stable operating margin by 26.32% at the design speed.

References

1.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
2.
Wu
,
Y. H.
,
Chu
,
W. L.
,
Lu
,
X. G.
, and
Zhu
,
J. Q.
,
2007
, “
Behaviour of Tip-Leakage Flow in an Axial Flow Compressor Rotor
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
221
(
1
), pp.
99
110
.
3.
An
,
G. Y.
,
Wu
,
Y. H.
,
Spence
,
S.
,
Lang
,
J. H.
,
Chen
,
Z. Y.
, and
Larimi
,
Y. M.
,
2021
, “
Numerical Investigation Into the Mechanism Regarding the Inception and Evolution of Flow Unsteadiness Induced by the Tip Leakage Flow in a Transonic Compressor
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
235
(
1
), pp.
44
58
.
4.
Zhang
,
B. T.
,
Mao
,
X. C.
,
Wu
,
X. X.
, and
Liu
,
B.
,
2021
, “
Effects of Tip Leakage Flow on the Aerodynamic Performance and Stability of an Axial-Flow Transonic Compressor Stage
,”
Energies
,
14
(
14
), p.
4168
.
5.
Ohta
,
Y.
,
Fujita
,
Y.
, and
Morita
,
D.
,
2012
, “
Unsteady Behavior of Surge and Rotating Stall in an Axial Flow Compressor
,”
J. Therm. Sci.
,
21
(
4
), pp.
302
310
.
6.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
7.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part II: Low and High-Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
(
4
), pp.
533
541
.
8.
Wadia
,
A. R.
,
Szucs
,
P. N.
, and
Crall
,
D. W.
,
1998
, “
Inner Workings of Aerodynamic Sweep
,”
ASME J. Turbomach.
,
120
(
4
), pp.
671
682
.
9.
Gümmer
,
V.
,
Wenger
,
U.
, and
Kau
,
H.-P.
,
2001
, “
Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors
,”
ASME J. Turbomach.
,
123
(
1
), pp.
40
48
.
10.
Zheng
,
X. Q.
, and
Li
,
Z. H.
,
2017
, “
Blade-End Treatment to Improve the Performance of Axial Compressors: An Overview
,”
Prog. Aerosp Sci.
,
88
, pp.
1
14
.
11.
Zhong
,
J. J.
,
Wu
,
W. Y.
, and
Han
,
S. B.
,
2021
, “
Research Progress of Tip Winglet Technology in Compressor
,”
J. Therm. Sci.
,
30
(
1
), pp.
18
31
.
12.
Wu
,
W. Y.
, and
Zhong
,
J. J.
,
2021
, “
Experimental Investigation of the Influence on Compressor Cascade Characteristics at High Subsonic Speed With Pressure Surface Tip Winglets
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
235
(
6
), pp.
1257
1271
.
13.
Wu
,
W. Y.
, and
Zhong
,
J. J.
,
2022
, “
Variable Clearance Characteristics of High Subsonic Compressor Cascades With Blade Tip Winglets
,”
J. Therm. Sci.
,
31
(
2
), pp.
495
510
.
14.
Xu
,
W. F.
,
Sun
,
P.
,
Zhong
,
J. J.
,
Han
,
S. B.
, and
Yang
,
G. G.
,
2022
, “
Effects of Fusion Height of Tip Winglet on the Clearance Flow in a Compressor Cascade
,”
Proc. Inst. Mech. Eng., Part G J. Aer. Eng.
,
236
(
15
), pp.
3313
3324
.
15.
Xu
,
W. F.
,
Lu
,
W. X.
,
Sun
,
D.
,
Ren
,
G. Z.
, and
Zou
,
S. L.
,
2024
, “
Effect of Pressure-Side Tip Winglet With Different Heights and Lengths on Clearance Flow in a Compressor Cascade
,”
Phys. Fluids.
,
36
(
3
), p.
034107
.
16.
Han
,
S. B.
, and
Zhong
,
J. J.
,
2016
, “
Effect of Blade Tip Winglet on the Performance of a Highly Loaded Transonic Compressor Rotor
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
653
661
.
17.
Zhao
,
Q. J.
,
Cui
,
W. W.
,
Xiang
,
X. R.
,
Xu
,
Q. R.
, and
Xu
,
J. Z.
,
2022
, “
Numerical Investigation of Blade Tip Winglet on Flow Structure in a High Loading Transonic Rotor
,”
Proc. Inst. Mech. Eng., Part G J. Aer. Eng.
,
236
(
1
), pp.
96
108
.
18.
Cui
,
W. W.
,
Wang
,
X. L.
,
Yao
,
F.
,
Zhao
,
Q. J.
,
Liu
,
Y. Q.
,
Liu
,
L. N.
,
Wang
,
C. P.
, and
Yang
,
L. S.
,
2022
, “
Effects of Width Variation of Pressure-Side Winglet on Tip Flow Structure in a Transonic Rotor
,”
J. Therm. Sci.
,
31
(
1
), pp.
141
150
.
19.
Zhao
,
A.
,
Wu
,
W. Y.
,
Hu
,
Y.
, and
Zhong
,
J. J.
,
2023
, “
Influence of the Chordwise Distribution of Tip Winglets on the Stability of a High-Load Compressor Stage
,”
Phys. Fluids
,
35
(
10
), pp.
104
111
.
20.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure Ratio Core Compressor,” Report No. NASA TP-1337.
21.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “Performance of Single-Stage Axial Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05,” Report No. NASA TP-1659.
22.
Sun
,
P.
,
Yu
,
J. Y.
,
Xu
,
W. F.
, and
Fu
,
W. G.
,
2023
, “
Effect of a Tip Groove on the Performance of Compressor Linear Cascade
,”
Fluid Dyn.
,
58
(
4
), pp.
670
683
.
23.
Mustaffa
,
A. F.
, and
Kanjirakkad
,
V.
,
2021
, “
Single and Multiple Circumferential Casing Groove for Stall Margin Improvement in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
143
(
7
), p.
071010
.
You do not currently have access to this content.