Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The turbine vanes being manufactured and assembled piece by piece leads to an unavoidable gap on the vane endwall called slashface. Usually, the coolant leakage introduced from the slashface with a single surface angle aims to prevent hot gas ingression and protect the vane endwall. However, the cooling effectiveness is greatly reduced when considering the swirling flow from the combustor. In the current work, against strong swirling inflow, a new solution to improve endwall film cooling performance through applying the slashface leakage with the double surface angle is carried out. Through numerical method, the effects of the location of the angle transition region (D/L = 0%, 25%, 50%, 75%, 100%) and mass flow ratio (MFR = 0.5%, 1.0%, 1.5%) of the leakage on the turbine vane endwall aerothermal and film cooling performance are investigated. The results indicated that the coverage area of the coolant on the endwall was obviously enlarged when the slashface leakage with the double surface angle was employed. The film cooling level on both the endwall and suction side surface of the vane increased with increasing MFR. Moreover, the endwall thermal load was reduced. The designs of D/L = 25% and 50% are recommended for their high endwall film cooling level and low endwall thermal load. This paper provides turbine designers with a new idea to increase endwall film cooling performance by the slashface leakage with the double surface angle when considering aggressive swirling inflow.

References

1.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y.-G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
3.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
J. Eng. Power
,
99
(
1
), pp.
21
28
.
4.
Halpin
,
J. L.
,
1993
, “Swirl Generation and Recirculation Using Radial Swirl Vanes,” ASME Paper No. 93-GT-169, Cincinnati, OH, USA.
5.
Wu
,
Z.
,
Zhu
,
H.
,
Liu
,
C.
,
Li
,
L.
, and
Wang
,
M.
,
2022
, “
Superposition Effect of the Leading Edge Film on the Downstream Film Cooling of a Turbine Vane Under Combustor Swirling Outflow
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031022
.
6.
Zhang
,
W.
,
Wang
,
Z.
,
Wang
,
Z.
,
Li
,
R.
, and
Feng
,
Z.
,
2022
, “
Study on Heat Transfer Characteristics of NGVs Influenced by Non-Reacting Lean Burn Combustor Simulator Flow
,”
Int. J. Therm. Sci.
,
172
, p.
107313
.
7.
Bacci
,
T.
,
Picchi
,
A.
,
Babazzi
,
G.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2023
, “
Heat Transfer Coefficient and Adiabatic Wall Temperature Measurements on High-Pressure Turbine Nozzle Guide Vanes With Representative Inlet Swirl and Temperature Distortions
,”
ASME J. Turbomach.
,
145
(
7
), p.
071010
.
8.
Li
,
Z.
,
Zhang
,
K.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Turbine Vane Endwall Aerothermal and Film Cooling Performance Considering Realistic Swirling Inflow Conditions
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
237
(
8
), pp.
1662
1682
.
9.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H.-P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.
10.
Zhang
,
Y.
,
Li
,
Y.
,
Bian
,
X.
, and
Yuan
,
X.
,
2019
, “
Effects of Inlet Swirl on Pressure Side Film Cooling of Neighboring Vane Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061008
.
11.
Zhang
,
K.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Effect of Inflow Swirl on the Vane Endwall Aerothermal Performance With Endwall Misalignment at Transonic Condition
,”
Int. J. Heat Mass Transfer
,
144
, p.
118662
.
12.
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
, and
Schuller
,
T.
,
2018
, “
Stabilization Mechanisms of Swirling Premixed Flames With an Axial-Plus-Tangential Swirler
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081502
.
13.
Moore
,
J.
, and
Forlini
,
T. J.
,
1984
, “
A Horseshoe Vortex in a Duct
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
668
676
.
14.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
J. Eng. Power
,
102
(
2
), pp.
257
267
.
15.
Gaugler
,
R. E.
, and
Russell
,
L. M.
,
1984
, “
Comparison of Visualized Turbine Endwall Secondary Flows and Measured Heat Transfer Patterns
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
168
172
.
16.
Mahi
,
M. Y.
,
Chukwuemeka
,
E.
,
Donovan
,
S.
,
Ames
,
F.
,
Kanani
,
Y.
, and
Acharya
,
S.
,
2023
, “
The Influence of Turbulence and Reynolds Number on Endwall Heat Transfer in a Vane Cascade
,”
ASME J. Turbomach.
,
145
(
7
), p.
071012
.
17.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwall—Part 1: Aerodynamics
,”
ASME J. Turbomach.
,
143
(
12
), p.
121009
.
18.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwall—Part 2: Thermal Measurements
,”
ASME J. Turbomach.
,
143
(
12
), p.
121010
.
19.
Zhang
,
K.
,
Li
,
Z.
,
Wu
,
J.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Turbine Nozzle Endwall Aero-Thermal Characteristics Under Combustor Louver Coolant With Interface Cavity
,”
Appl. Therm. Eng.
,
219
, p.
119683
.
20.
Darji
,
A. P.
,
Baloni
,
B. D.
, and
Mistry
,
C. S.
,
2023
, “
Study on Secondary Flow Phenomena with Variable Leading Edge Fillet and Endwall Contouring on the Low-Pressure Turbine Vane Linear Cascade
,”
Proceedings of the ASME Turbo Expo 2023
,
Boston, MA
,
June 26–30
,
Paper No. GT2023-102972
.
21.
Salinas
,
D. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2021
, “
Upstream Film Cooling on the Contoured Endwall of a Transonic Turbine Vane in an Annular Cascade
,”
ASME J. Turbomach.
,
143
(
6
), p.
061012
.
22.
Zhang
,
J.
,
Liu
,
C.
,
Niu
,
X.
,
Xu
,
W.
,
Zhang
,
L.
, and
Liu
,
X.
,
2023
, “
Effect of Upstream Leakage Flow on Film Cooling Characteristic of a Turbine Convex Endwall
,”
ASME J. Turbomach.
,
145
(
11
), p.
111002
.
23.
Burdett
,
T. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2022
, “
Optimized Film Cooling Flow on a Contoured Endwall Within a Transonic Annular Cascade
,”
Proceedings of the ASME Turbo Expo 2022
,
Rotterdam, The Netherlands
,
June 13–17
,
Paper No. GT2022-78519
.
24.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
10
), p.
041002
.
25.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
26.
Chowdhury
,
N. H. K.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
27.
Bai
,
B.
,
Li
,
Z.
,
Hao
,
M.
,
Li
,
Y.
,
Zhang
,
K.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Turbine Blade Endwall Heat Transfer and Film Cooling Performance With Multigap Jets and Film Holes
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111020
.
28.
Mao
,
S.
,
Van Hout
,
D.
,
Zhang
,
K.
,
Lee
,
J. W.
,
Ng
,
W. F.
,
Xu
,
H.
,
Fox
,
M.
, and
Li
,
J.
,
2023
, “
Upstream Jet Cooling and Dual Cavity Slashface Leakage Cooling on a Transonic Nozzle Guide Vane Endwall
,”
ASME J. Turbomach.
,
145
(
8
), p.
081006
.
29.
Zhang
,
K.
,
Li
,
Z.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Gas Turbine Endwall Film Cooling and Heat Transfer Characteristics With a Multi-Cavity Slashface Gap Design
,”
Aerosp. Sci. Technol.
,
132
, p.
108076
.
30.
Zhang
,
W.
,
Li
,
F.
,
Xie
,
Y.
,
Ding
,
Y.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2023
, “
Experimental and Numerical Investigations of Discrete Film Holes Cooling Performance on a Blade Endwall With Mid-Passage Gap Leakage
,”
Int. J. Heat Mass Transfer
,
201
, p.
123550
.
31.
Stickles
,
R.
, and
Barrett
,
J.
,
2013
, “TAPS II Technology Final Report–Technology Assessment,” Open Report in Continuous Lower Energy, Emissions and Noise (CLEEN) Technologies Development, Paper No. DTFAWA-1C-00046.
32.
El-Gabry
,
L.
,
Xu
,
H.
,
Liu
,
K.
,
Chang
,
J.
, and
Fox
,
M.
,
2018
, “
Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade
,”
Proceedings of the ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
,
Paper No. GT2018-75877
.
33.
Zhang
,
K.
,
Li
,
J.
,
Li
,
Z.
, and
Song
,
L.
,
2019
, “
Effects of Simulated Swirl Purge Flow and Mid-Passage Gap Leakage on Turbine Blade Platform Cooling and Suction Surface Phantom Cooling Performance
,”
Int. J. Heat Mass Transfer
,
129
, pp.
618
634
.
You do not currently have access to this content.