Abstract

Downstream vortex generators that involve a pair of rectangular plates arranged in an open V-shape placed just downstream of each film-cooling hole were shown to create flow and vortical structures that entrain lifted film-cooling flow back to the surface and increase its lateral spreading on the surface (GT2020–14317). In this study, computations and measurements were performed to examine the flow mechanisms this vortex generator induces to improve film-cooling effectiveness of a flat plate with the cooling flow emanating from one row of inclined holes. Parameters studied include blowing ratio (BR = 0.75 and 1.0) and temperature ratio (TR = 1.07 and 1.9). The computational study is based on steady Reynolds-averaged Navier–Stokes (RANS) closed by the shear-stress transport (SST) turbulence model with and without conjugate analysis. The experimental study was conducted by using a conjugate heat transfer test rig with a plenum, where cooling flow is introduced. Measurements made include velocity and temperature profiles upstream and downstream of the film-cooling holes as well as the temperature at several locations on the hot and cold sides of the film-cooled flat plate. The computational study was validated by comparing computed results with those from measurements at BR = 0.75 and 1.0 and TR = 1.9. Computational and experimental results are presented to show the effects of BR and TR on the flow structures and how those structures improve the effectiveness of film cooling with and without the downstream vortex generators and with and without conjugate heat transfer.

References

1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
2.
Kercher
,
D. M.
,
1998
, “
A Film-Cooling CFD Bibliography: 1971–1996
,”
Int. J. Rotating Mach.
,
4
(
1
), pp.
61
72
.
3.
Kercher
,
D. M.
,
2000
, “
Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998
,”
Int. J. Rotating Mach.
,
6
(
5
), pp.
313
319
.
4.
Chyu
,
M. K.
,
2012
, “
Recent Advances in Turbine Heat Transfer—With a View of Transition to Coal-Gas Based Systems
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
3
), p.
031006
.
5.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results with Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.
6.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Tranverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
7.
Lee
,
C.-S.
,
Bryden
,
K. M.
, and
Shih
,
T. I-P.
,
2020
, “
Downstream Vortex Generators to Enhance Film-Cooling Effectiveness
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Volume 7B: Heat Transfer
,
Virtual, Online
,
Sept. 21–25
, ASME Paper GT2020-14317.
8.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
9.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
606
.
10.
Makki
,
Y. H.
, and
Jakubowski
,
G. S.
,
1986
, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,”
AIAA/ASME 4th Joint Thermophysics and Heat Transfer Conference
,
Boston, MA
,
June 2–4
, AIAA Paper AIAA-86-1326.
11.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
12.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
13.
Shih
,
T. I-P.
, and
Na
,
S.
,
2007
, “
Momentum-Preserving Shaped Holes for Film Cooling
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Volume 4: Heat Transfer,Parts A and B
,
Montreal, Canada
,
May 14–17
.
14.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Eriksen
,
V. L.
, and
Ramsey
,
J. W.
,
1970
, “
Film Cooling Following Injection Through Inclined Circular Tubes
,”
Isr. J. Technol.
,
108
, pp.
145
154
.
15.
Ligrani
,
P. M.
,
Ciriello
,
S.
, and
Bishop
,
D. T.
,
1992
, “
Heat Transfer, Adiabatic Effectiveness, and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film-Cooling Holes
,”
ASME J. Turbomach.
,
114
(
4
), pp.
687
700
.
16.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling with Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
,
118
(
4
), pp.
800
806
.
17.
Sathyamurthy
,
P.
, and
Patankar
,
S.
,
1990
, “
Prediction of Film Cooling with Lateral Injection
,”
Proceedings of the AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Heat Transfer in Turbulent Flow
,
Seattle, WA
,
June 18–20
, ASME Heat Transfer Division, Vol. 138, pp.
61
70
.
18.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
19.
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1986
, “
Flat-Plate Film Cooling With Steam Injection Through One Row and Two Rows of Inclined Holes
,”
ASME J. Turbomach.
,
108
(
1
), pp.
137
144
.
20.
Shih
,
T. I.-P.
,
Na
,
S.
, and
Chyu
,
M. K.
,
2006
, “
Prevent Hot-Gas Entrainment by Film-Cooling Jets via Flow-Aligned Blockers
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air, Volume 3: Heat Transfer, Parts A and B
,
Barcelona, Spain
,
May 8–11
, ASME Paper GT-2006-91161.
21.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air
, pp.
129
138
, ASME Paper GT–2002–30178.
22.
Na
,
S.
, and
Shih
,
T. I-P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
4
), pp.
464
471
.
23.
Chen
,
S. P.
,
Chyu
,
M. K.
, and
Shih
,
T. I-P.
,
2011
, “
Effects of Upstream Ramp on the Performance of Film Cooling
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
1085
1094
.
24.
Shih
,
T. I.-P.
,
Lin
,
Y.-L.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
1999
, “
Computations of Film Cooling From Holes With Struts
,”
Proceedings of the ASME 1999 International GasTurbine and Aeroengine Congress and Exhibition, Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Indianapolis, IN
,
June 7–10
, ASME Paper 99-GT-282.
25.
Zaman
,
K. B. M. Q.
, and
Foss
,
J. K.
,
1997
, “
The Effect of Vortex Generators on a Jet in a Cross-Flow
,”
Phys. Fluids
,
9
(
1
), pp.
106
114
.
26.
Ekkad
,
S. V.
,
Nasir
,
H.
, and
Acharya
,
S.
,
2003
, “
Flat Surface Film Cooling From Cylindrical Holes With Discrete Tabs
,”
AIAA J. Thermophys. Heat Transfer
,
17
(
3
), pp.
304
312
.
27.
Heidmann
,
J. D.
, and
Ekkad
,
S. V.
,
2008
, “
A Novel Anti-Vortex Turbine Film Cooling Hole Concept
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Volume 4: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17
, ASME Paper GT2007–27528. Also, Journal of Turbomachinery, p.
130
.
28.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, 4: Heat Transfer, Parts A and B
,
Berlin, Germany
,
June 9–13
, pp.
1161
1174
, ASME IGTI Paper GT-2008-51361.
29.
Zaman
,
K. B. M. Q.
,
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2010
, “
Inclined Jet in Crossflow Interacting With a Vortex Generator
,”
AIAA J. Propuls. Power
,
26
(
5
), pp.
947
954
.
30.
Song
,
L.
,
Zhang
,
C.
,
Song
,
Y.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Experimental Investigations on the Effects of Inclination Angle and Blowing Ratio on the Flat-Plate Film Cooling Enhancement Using the Vortex Generator Downstream
,”
Appl. Therm. Eng.
,
119
, pp.
573
584
.
31.
He
,
J.
,
Deng
,
Q.
, and
Feng
,
Z.
,
2021
, “
Film Cooling Performance Enhancement by Upstream V-Shaped Protrusion/Dimple Vortex Generator
,”
Int. J. Heat Mass Transfer
,
180
, p.
121784
.
32.
Zhao
,
Z.
,
Wen
,
F.
,
Tang
,
X.
,
Luo
,
Y.
,
Lou
,
R.
, and
Wang
,
Z.
,
2021
, “
Large Eddy Simulation of an Inclined Jet in Crossflow With Vortex Generators
,”
Int. J. Heat Mass Transfer
,
170
, p.
121032
.
33.
Zhao
,
Z.
,
Wen
,
F.
,
Tang
,
X.
,
Song
,
J.
, and
Wang
,
Z.
,
2021
, “
Large Eddy Simulation of Pulsed Film Cooling With Vortex Generators
,”
Int. J. Heat Mass Transfer
,
180
, p.
121806
.
34.
Deng
,
H.
,
Teng
,
J.
,
Zhu
,
M.
,
Qiang
,
X.
,
Lu
,
S.
, and
Jiang
,
Y.
,
2022
, “
Overall Cooling Performance Evaluation for Film Cooling With Different Winglet Pairs Vortex Generators
,”
Appl. Therm. Eng.
,
201
, p.
117731
.
35.
Zhao
,
Z.
,
Wen
,
F.
,
Tang
,
X.
,
Song
,
J.
,
Luo
,
Y.
, and
Wang
,
Z.
,
2022
, “
Large Eddy Simulation of Film Cooling With Vortex Generators Between Two Consecutive Cooling Rows
,”
Int. J. Heat Mass Transfer
,
182
, p.
121955
.
36.
Ramesh
,
S.
,
Robey
,
E.
,
Lawson
,
S. A.
,
Straub
,
D.
, and
Black
,
J.
,
2020
, “
Design, Flow Field and Heat Transfer Characterization of the Conjugate Aero-Termal Test Facility at NETL
,”
Proceedings of ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition, Volume 7B: Heat Transfer
,
Virtual, Online
,
Sept. 21–25
, Paper No. GT2020-15644.
37.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer
,
Antalya, Turkey
,
Oct. 12–17
, pp.
625
632
.
38.
Kim
,
C. S.
,
1975
, “
Thermophysical Properties of Stainless Steels
,” Chemical Engineering Division,
U.S. Argonne National Lab
,
Argonne, IL
, Technical Report No. ANL-75-55,
39.
ANSYS FLUENT Computational Fluid Dynamic Code, Version 2020 R1
, https://www.ansys.com/products/fluids/ansys-fluent.
40.
Stratton
,
Z. T.
, and
Shih
,
T. I-P.
,
2019
, “
Identifying Weaknesses in Eddy-Viscosity Models for Predicting Film Cooling via Large-Eddy Simulations
,”
J. Propul. Power
,
35
(
3
), pp.
583
594
.
You do not currently have access to this content.