Abstract

This paper investigates the effect of upstream leakage coolant flow on the film cooling performance of the convex endwall. The experiment is conducted in an annular passage with four vanes, and the endwall film cooling effectiveness distribution is measured by the pressure-sensitive paint technique. The near-wall flow field distribution predicted by computational fluid dynamics is employed to gain a deeper understanding of the influence of the passage secondary flow on the film cooling characteristic of the endwall. Furthermore, the effect of mass flow ratios (MFR = 0.75%, 1.0%, 1.25%, and 1.5%), leakage slot inclination angles (α = 30 deg, 45 deg, and 60 deg), density ratios (DR = 1.0, 1.5, and 2.0), as well as Reynolds number (Re = 2.0 × 105, 3.0 × 105, and 4.0 × 105) on the endwall film cooling is also investigated. Results indicate that the mass flow ratio has a great influence on the endwall film cooling effectiveness distribution, and a larger uncooled region can be observed when MFR is less than 1.25% due to the cooling air more easily being entrained by the secondary flow near the endwall. Reducing the inclination angle of the leakage slot enhances the axial velocity component of the coolant flow, thereby weakening the secondary flow near the endwall and improving the film cooling effectiveness distribution of the endwall. As the density ratio increases, the jet momentum of the leakage flow is reduced, particularly for higher MFR cases, which results in a significant reduction in the film cooling performance of the endwall. Besides, thinning the incoming boundary layer of the passage reduces the strength and size of the secondary flow in the passage and improves the endwall adiabatic effectiveness distribution when the Reynolds number is increased.

References

1.
Hada
,
S.
, and
Thole
,
K. A.
,
2011
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME J. Turbomach.
,
133
(
1
), p.
011024
.
2.
Du
,
K.
,
Song
,
L.
,
Li
,
J.
, and
Sunden
,
B.
,
2017
, “
Effects of the Mainstream Turbulence Intensity and Slot Injection Angle on the Endwall Cooling and Phantom Cooling of the Vane Suction Side Surface
,”
Int. J. Heat Mass Transfer
,
112
, pp.
427
440
.
3.
Li
,
S.-J.
,
Lee
,
J.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2016
, “
Influence of Mainstream Turbulence on Turbine Blade Platform Cooling From Simulated Swirl Purge Flow
,”
Appl. Therm. Eng.
,
101
, pp.
678
685
.
4.
Yu
,
Z.
,
Liu
,
J.
,
Li
,
C.
,
An
,
B.
, and
Xu
,
G.
,
2021
, “
Experimental Investigation of Film Cooling Performance on Blade Endwall With Diffusion Slot Holes and Stator–Rotor Purge Flow
,”
ASME J. Turbomach.
,
143
(
5
), p.
051009
.
5.
Zhang
,
J.
,
Liu
,
C.
,
Zhang
,
L.
,
Zhou
,
T.
,
Li
,
L.
, and
Guo
,
Y.
,
2022
, “
Experimental Study of Film Cooling Characteristics of Annular Cascade Endwall With a Partitioned Film Cooling Layout
,”
Int. J. Therm. Sci.
,
182
, p.
107821
.
6.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
7.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High-Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
8.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
9.
Thrift
,
A. A.
, and
Thole
,
K. A.
,
2012
, “
Influence of Flow Injection Angle on a Leading-Edge Horseshoe Vortex
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4651
4664
.
10.
Rehder
,
H.-J.
, and
Dannhauer
,
A.
,
2007
, “
Experimental Investigation of Turbine Leakage Flows on the Three-Dimensional Flow Field and Endwall Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
608
618
.
11.
Gao
,
H.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2021
, “
Effect of Leakage Flow on the Endwall Cooling Performance in High Subsonic Turbine Cascade
,”
Int. J. Therm. Sci.
,
170
, p.
107140
.
12.
Song
,
L.
,
Zhu
,
P.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Effect of Purge Flow on Endwall Flow and Heat Transfer Characteristics of a Gas Turbine Blade
,”
Appl. Therm. Eng.
,
110
, pp.
504
520
.
13.
Muller
,
G.
,
Landfester
,
C.
,
Martin
,
B.
, and
Krewinkel
,
R.
,
2020
, “
Turbine Vane Endwall Film Cooling Effectiveness of Different Purge Slot Configurations in a Linear Cascade
,”
ASME J. Turbomach.
,
142
(
3
), p.
031008
.
14.
Landfester
,
C.
,
Muller
,
G.
,
Krewinkel
,
R.
,
Domnick
,
C.
, and
Böhle
,
M.
,
2022
, “
Comparison of Film Cooling Performance for Different Purge Slot Configurations in a Cylindrical and State-of-the-Art Nozzle Guide Vane
,”
ASME J. Turbomach.
,
144
(
3
), p.
031014
.
15.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041007
.
16.
Kim
,
G. M.
,
Lee
,
S. I.
,
Jeong
,
J. Y.
,
Kwak
,
J. S.
,
Kim
,
S.
, and
Choi
,
J. U.
,
2021
, “
An Experimental Study of the Leakage Flow Effect on the Film Cooling Effectiveness of a Gas Turbine Shroud
,”
ASME J. Turbomach.
,
13
(
6
), p.
061007
.
17.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling: Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.
18.
Sabatino
,
D. R.
, and
Smith
,
C. R.
,
2009
, “
Boundary Layer Influence on the Unsteady Horseshoe Vortex Flow and Surface Heat Transfer
,”
ASME J. Turbomach.
,
131
(
1
), p.
011015
.
19.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
568
568
.
20.
Salinas
,
D.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2021
, “
Upstream Film Cooling on the Contoured Endwall of a Transonic Turbine Vane in an Annular Cascade
,”
ASME J. Turbomach.
,
143
(
6
), p.
061012
.
21.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.
22.
Li
,
Y.
,
Zhang
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
Experimental and Numerical Investigations of Shaped Hole Film Cooling With the Influence of Endwall Cross Flow
,”
Int. J. Heat Mass Transfer
,
120
, pp.
42
55
.
23.
Zhang
,
H.
,
Wang
,
Q.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2020
, “
Effects of Compound Angle on Film Cooling Effectiveness Considering Endwall Lateral Pressure Gradient
,”
Aerospace Sci. Technol.
,
103
, p.
105923
.
24.
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2022
, “
Trajectory and Effectiveness of Film Cooling in Endwall Crossflow
,”
Aerospace Sci. Technol.
,
128
, p.
107795
.
25.
Mahmood
,
G. I.
, and
Arnachellan
,
K.
,
2018
, “
Effects of Upstream Endwall Film Cooling on a Vane Cascade Flowfield
,”
J. Propul. Power
,
34
(
2
), pp.
460
468
.
26.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.