Abstract

Mixed flow turbines have reached a level of maturity where iterative performance improvements are very small, with real performance benefits coming from better matching to a given application as opposed to improvements in technology. One ubiquitous design feature of mixed flow turbines used to control stress within the wheel is the radial fiber constraint, wherein blade material is stacked radially outward along the entirety of the blade. While this constraint yields a mechanical benefit, it constrains the aerodynamic design significantly, with the blade shape defined by one camberline. One potential means of realizing a performance improvement is the use of 3D blading, where the blade is not constrained to a radially fibered structure. In such a design, the blade shape could be freely modified to better control blade loading and secondary flows. This study investigated the viability of such 3D blading through optimization of a state of the art mixed flow turbine. An equivalent design was ensured by maintaining the meridional shape and operating conditions of the baseline (BL) wheel, thus facilitating a fair comparison between the radial and 3D wheels. The paper details the optimization including an innovative constraint-driven geometry modification tool, experimental validation of performance predictions, and an investigation into why 3D blading facilitated a performance improvement. The optimization process identified a performance improvement across the entire turbocharger operating line. With performance improvements facilitated through a reduction in tip leakage loss and improved pressure recovery within the conical diffuser. Importantly, the optimized design met targets for mass flow, maximum stress levels, and modal behavior, through the use of the novel geometry modification process.

References

1.
Elfert
,
M.
,
Weber
,
A.
,
Wittrock
,
D.
,
Peters
,
A.
,
Voss
,
C.
, and
Nicke
,
E.
,
2017
, “
Experimental and Numerical Verification of an Optimization of a Fast Rotating High-Performance Radial Compressor Impeller
,”
ASME J. Turbomach.
,
139
(
10
), p.
101007
.
2.
Hiett
,
G. F.
, and
Johnston
,
I. H.
,
1963
, “
Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines
,”
Proc. Inst. Mech. Eng. Conf. Proc.
,
178
(
2
), pp.
28
42
.
3.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
, “Radial Turbine Design,”
Axial and Radial Turbines
,
Concepts/NREC
,
White River Junction, VT
, p.
277
.
4.
Walkingshaw
,
J.
,
Spence
,
S.
,
Ehrhard
,
J.
, and
Thornhill
,
D.
,
2012
, “
An Experimental Assessment of the Effects of Stator Vane Tip Clearance Location and Back Swept Blading on an Automotive Variable Geometry Turbocharger
,”
Proc. ASME Turbo Expo
, Vol.
8
,
June 11–15
,
Copenhagen, Denmark
, pp.
927
937
.
5.
Mueller
,
L.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
,
2012
, “
Multidisciplinary Optimization of a Turbocharger Radial Turbine
,”
ASME J. Turbomach.
,
135
(
2
), p.
021022
.
6.
Raitor
,
T.
,
Reutter
,
O.
,
Aulich
,
M.
, and
Nicke
,
E.
,
2013
, “
Aerodynamic Design Studies of a Transonic Centrifugal Compressor Impeller Based on Automated 3D-CFD Optimization
,”
10th Eur. Turbomach. Conf.
,
Lappeenranta, Finland
,
Apr. 15–19
, pp.
809
819
.
7.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
.
8.
Mueller
,
L.
,
Verstraete
,
T.
, and
Schwalbach
,
M.
,
2019
, “
Adjoint-Based Multidisciplinary, Multipoint Optimization of a Radial Turbine Considering Aerodynamic and Structural Performances
,”
Proc. ASME Turbo Expo
, Vol.
2D
,
Phoenix, AZ
,
June 17–21
, pp.
1
12
.
9.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
10.
Newton
,
P.
,
Palenschat
,
T.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2015
, “
Entropy Generation Rate in a Mixed Flow Turbine Passage
,”
Proceedings of International Gas Turbine Congress 2015
,
Tokyo, Japan
,
Nov. 15–20
, Paper No. 206, pp.
911
920
.
11.
Leonard
,
T.
,
Spence
,
S.
,
Starke
,
A.
, and
Filsinger
,
D.
,
2019
, “
Numerical and Experimental Investigation of the Impact of Mixed Flow Turbine Inlet Cone Angle and Inlet Blade Angle
,”
ASME J. Turbomach.
,
141
(
8
), p.
081001
.
12.
Morrison
,
R.
,
Spence
,
S.
,
Kim
,
S. I.
,
Leonard
,
T.
, and
Starke
,
A.
,
2020
, “
Evaluating the Use of Leaned Stator Vanes To Produce a Non-Uniform Flow Distribution Across the Inlet Span of a Mixed Flow Turbine Rotor
,”
ASME J. Turbomach.
,
142
(
12
), p.
121001
.
13.
Ju
,
Y.
,
Qin
,
R.
,
Kipouros
,
T.
,
Parks
,
G.
, and
Zhang
,
C.
,
2016
, “
A High-Dimensional Design Optimisation Method for Centrifugal Impellers
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
3
), pp.
272
288
.
14.
Xia
,
G.
,
Medic
,
G.
, and
Praisner
,
T. J.
,
2018
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
140
(
8
), p.
081004
.
15.
Yoon
,
S.
,
Vandeputte
,
T.
,
Mistry
,
H.
,
Ong
,
J.
, and
Stein
,
A.
,
2016
, “
Loss Audit of a Turbine Stage
,”
ASME J. Turbomach.
,
138
(
5
), p.
051004
.
16.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.
17.
Palenschat
,
T.
,
Newton
,
P.
,
Martinez-Botas
,
R. F.
,
Müller
,
M.
, and
Leweux
,
J.
,
2017
, “
3-D Computational Loss Analysis of
an Asymmetric Volute Twin-Scroll Turbocharger
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines
, Vol.
8
,
Charlotte, NC
,
June 26–30
, V008T26A016, ASME, pp.
1
15
.
18.
Stuart
,
C.
,
Spence
,
S.
,
Filsinger
,
D.
,
Starke
,
A.
, and
Kim
,
S. I.
,
2018
, “
Characterizing the Influence of Impeller Exit Recirculation on Centrifugal Compressor Work Input
,”
ASME J. Turbomach.
,
140
(
1
), p.
011005
.
You do not currently have access to this content.