Abstract

This article presents first-of-a-kind measurements, and complementary computations, of the flow through the propulsion system of a boundary layer ingesting, twin-engine advanced civil transport aircraft configuration. The experiments were carried out in the NASA Langley 14- by 22-foot Subsonic Tunnel, using a 1:11 scale model of the D8 “double-bubble” aircraft with electric ducted fans providing propulsive power. Overall force and moment measurements and flow field surveys at the inlet and nozzle exit planes were obtained. The computations were carried out with the NASA OVERFLOW code. The measurements and computations were conducted for a range of aircraft angles of attack and propulsor powers representing operating points during the aircraft mission. Velocity and pressure distributions at the propulsor inlet and exit, and integral inlet distortion metrics, are presented to quantify the flow nonuniformity due to boundary layer ingestion. The distorted inflow exhibits qualitative and quantitative changes over the mission, from a unidirectional stratified stagnation pressure at cruise to a streamwise vortex structure at climb conditions. The computations capture these flow features and reveal the interactions between airframe and propulsor that create these three-dimensional flow variations.

References

1.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
AIAA J. Propul. Power
,
9
(
1
), pp.
74
82
.
2.
Hall
,
D. K.
,
Huang
,
A. C.
,
Uranga
,
A.
,
Greitzer
,
E. M.
,
Drela
,
M.
, and
Sato
,
S.
,
2017
, “
Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft
,”
AIAA J. Propul. Power
,
33
(
5
), pp.
1118
1129
.
3.
Drela
,
M.
,
2009
, “
Power Balance in Aerodynamic Flows
,”
AIAA J.
,
47
(
7
), pp.
1761
1771
.
4.
Uranga
,
A.
,
Drela
,
M.
,
Hall
,
D. K.
, and
Greitzer
,
E. M.
,
2018
, “
Analysis of the Aerodynamic Benefit From Boundary Layer Ingestion for Transport Aircraft
,”
AIAA J.
,
56
(
11
), pp.
4271
4281
.
5.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Hall
,
D. K.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
, et al.,
2017
, “
Boundary Layer Ingestion Benefit of the D8 Transport Aircraft
,”
AIAA J.
,
55
(
11
), pp.
3693
3708
.
6.
Seitz
,
A.
,
Bijewitz
,
J.
, and
Kaiser
,
S.
,
2014
, “
Conceptual Investigation of a Propulsive Fuselage Aircraft Layout
,”
Aircr. Eng. Aerosp. Technol.: Int. J.
,
86
(
6
), pp.
464
472
.
7.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
54th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2016-1027.
8.
Liebeck
,
R. H.
,
2004
, “
Design of the Blended Wing Body Subsonic Transport
,”
AIAA J. Aircr.
,
41
(
1
), pp.
10
25
.
9.
Hall
,
C. A.
, and
Crichton
,
D.
,
2006
, “
Engine Design Studies for a Silent Aircraft
,”
ASME J. Turbomach.
,
129
(
3
), pp.
479
487
.
10.
Greitzer
,
E. M.
,
Bonnefoy
,
P. A.
,
Dorbian
,
C. S.
,
Drela
,
M.
,
Hall
,
D. K.
,
Hansman
,
R. J.
,
Hileman
,
J. I.
, et al.,
2010
, “N+3 Aircraft Concept Designs and Trade Studies, Final Report,”
NASA
,
Washington, DC
, Report No. NASA CR-2010-216794.
11.
Drela
,
M.
,
2011
, “
Development of the D8 Transport Configuration
,”
29th AIAA Applied Aerodynamics Conference
, AIAA Paper No. 2011-3970.
12.
Florea
,
R. V.
,
Matalanis
,
C.
,
Hardin
,
L. W.
,
Stucky
,
M.
, and
Shabbir
,
A.
,
2015
, “
Parametric Analysis and Design for Embedded Engine Inlets
,”
AIAA J. Propul. Power
,
31
(
3
), pp.
843
850
.
13.
Wiart
,
L.
,
Atinault
,
O.
,
Paluch
,
B.
,
Hue
,
D.
, and
Grenon
,
R.
,
2015
, “
Development of NOVA Aircraft Configurations for Large Engine Integration Studies
,”
33rd AIAA Applied Aerodynamics Conference
, AIAA Paper No. 2015-2254.
14.
Provenza
,
A. J.
,
Duffy
,
K. D.
, and
Bakhle
,
M. A.
,
2019
, “
Aeromechanical Response of a Distortion-Tolerant Boundary Layer Ingesting Fan
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011011
.
15.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
, ASME Paper No. GT2014-26142.
16.
Ochs
,
S. S.
,
Tillman
,
G.
,
Joo
,
J.
, and
Voytovych
,
D. M.
,
2017
, “
Computational Fluid Dynamics-Based Analysis of Boundary Layer Ingesting Propulsion
,”
AIAA J. Propul. Power
,
33
(
2
), pp.
522
530
.
17.
Perovic
,
D.
,
Hall
,
C. A.
, and
Gunn
,
E. J.
,
2019
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
AMSE J. Turbomach.
,
141
(
9
), p.
091007
.
18.
Stenning
,
A. H.
,
1980
, “
Inlet Distortion Effects in Axial Compressors
,”
ASME J. Fluid Eng.
,
102
(
1
), pp.
7
13
.
19.
Longley
,
J. P.
, and
Greitzer
,
E. M.
,
1992
, “
Inlet Distortion Effects in Aircraft Propulsion System Integration
,” Steady and Transient Performance Prediction of Gas Turbine Engines,
AGARD Lecture Series
, Vol.
183
,
Advisory Group for Aerospace Research and Development
,
Neuilly sur Seine, France
.
20.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.
21.
Uranga
,
A.
,
Greitzer
,
E. M.
,
Casses
,
C.
,
DiOrio
,
A.
,
Espitia
,
A.
,
Grasch
,
A.
,
Hall
,
D. K.
, et al.,
2018
, “Aircraft Technology Concepts for an N+3 Subsonic Transport, Phase 2 Final Report,”
MIT Gas Turbine Laboratory
,
Cambridge, MA
, Report No. 2-001.
22.
Nichols
,
R. H.
, and
Buning
,
P. G.
,
2021
, “
User’s Manual for OVERFLOW 2.3
,” NASA, https://overflow.larc.nasa.gov/users-manual-for-overflow-2-3/https://overflow.larc.nasa.gov/users-manual-for-overflow-2-3/, Accessed January 14, 2022.
23.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
,
1981
, “
A Diagonal Form of An Implicit Approximate Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
25.
Pandya
,
S. A.
,
2012
, “
External Aerodynamics Simulations for the MIT D8 ‘Double-Bubble’ Aircraft Design
,”
International Conference on Computational Fluid Dynamics
, Vol. 7, Paper No. ICCFD7-4304.
26.
Pandya
,
S. A.
,
Huang
,
A.
,
Espitia
,
A.
, and
Uranga
,
A.
,
2014
, “
Computational Assessment of the Boundary Layer Ingesting Nacelle Design of the D8 Aircraft
,”
52nd AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2014-0907.
27.
Defoe
,
J. J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors
,”
ASME J. Turbomach.
,
135
(
5
), p.
051013
.
28.
Siu
,
N. M.
,
2015
, “
Evaluation of Propulsor Aerodynamic Performance for Powered Aircraft Wind Tunnel Experiments
,” M.S. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
29.
Hall
,
D. K.
, and
Lieu
,
M. K.
,
2021
, “
Propulsor Models for Computational Analysis of Aircraft Aerodynamic Performance With Boundary Layer Ingestion
,”
AIAA SciTech 2021 Forum
, AIAA Paper No. 2021-0991.
30.
Aerospace Recommended Practice
,
2017
, “
Gas Turbine Engine Inlet Flow Distortion Guidelines
,” SAE International, Aerospace Recommended Practice, Document ARP1420C.
You do not currently have access to this content.