Abstract

Experimental and numerical investigations of three variants of internal cooling configurations—dimples only, ribs only, and ribs with dimples have been explored at process conditions (96 °C and 207 bar) with sCO2 as the coolant. The designs were chosen based on advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is experimentally calculated utilizing the Wilson Plot method and three heat transfer characteristics—augmentation in Nusselt number, friction factor, and overall thermal performance factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline flow cases are considered—a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds-averaged Navier–Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared with the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in the presence of ribs.

References

1.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Procedia
,
37
, pp.
1135
1149
.
2.
Han
,
J.-C.
, and
Wright
,
L. M.
,
2007
,
NETL Gas Turbine Handbook Section 4.2.2.2
.
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
4.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
5.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
6.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
653
659
.
7.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib-Dimple Compound Cooling Technique
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
435
441
.
8.
Kim
,
Y. W.
,
Arellano
,
L.
,
Vardakas
,
M.
,
Moon
,
H. K.
, and
Smith
,
K. O.
,
2003
, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
Proceedings of ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, Paper No. GT2003-38935, pp.
703
709
.
9.
Rallabandi
,
A. P.
,
Yang
,
H.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p.
071703
.
10.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45 Deg Round-Edged Ribs at High Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
3
), p.
031019
.
11.
Zhang
,
M.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Rib Turbulator Heat Transfer Enhancements at Very High Reynolds Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061014
.
12.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2014
, “
Heat Transfer and Pressure Loss Measurements in a Turbulated High Aspect Ratio Channel with Large Reynolds Number Flows
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041001
.
13.
Schmitt
,
J.
,
Willis
,
R.
,
Amos
,
D.
,
Kapat
,
J.
, and
Custer
,
C.
,
2014
, “
Study of a Supercritical CO2 Turbine With TIT of 1350 K for Brayton Cycle With 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, Paper No. GT2014-27214, pp.
1
11
.
14.
Schmitt
,
J.
,
Willis
,
R.
,
Amos
,
D.
,
Kapat
,
J.
, and
Custer
,
C.
,
2014
, “
Study of a Supercritical CO2 Turbine With Tit of 1350 k for Brayton Cycle With 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane
,”
The 4th International Symposium - Supercritical CO2 Power Cycles
,
Pittsburgh, PA
,
Sept. 9–10
, pp.
1
19
.
15.
Thimsen
,
D.
,
2015
, “
Regen-SCOT: Rocket Engine-Derived High Efficiency Turbomachinery for Electric Power Generation
,”
Palo Alto, CA
.
16.
Sasaki
,
T.
,
Itoh
,
M.
,
Maeda
,
H.
,
Tominaga
,
J.
,
Saito
,
D.
, and
Niizeki
,
Y.
,
2017
, “
Development of Turbine and Combustor for a Semi-Closed Recuperated Brayton Cycle of Supercritical Carbon Dioxide
,”
Proceedings of the ASME 2017 Power Conference Joint With ICOPE-17 POWER2017-ICOPE-17
,
Charlotte, NC
,
June 26–30
, pp.
1
6
.
17.
Musgrove
,
G.
,
2018
, “
sCO2 Cooling Performance in Turbomachinery
,”
The 6th International Supercritical CO2 Power Cycles Symposium
,
Pittsburgh, PA
,
Mar. 27–29
, pp.
2
7
.
18.
Black
,
J.
,
Straub
,
D.
,
Robey
,
E. H.
,
Yip
,
M. J.
,
Ramesh
,
S.
,
Roy
,
A.
, and
Searle
,
M.
,
2020
, “
Measurement of Convective Heat Transfer Coefficients With Supercritical CO2 Using the Wilson-Plot Technique
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070901
.
19.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
20.
Searle
,
M.
,
Black
,
J.
,
Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
,
Sabau
,
A. S.
, and
Mollot
,
D.
,
2020
, “
Heat Transfer Coefficients of Additively Manufactured Tubes With Internal Pin Fins for Supercritical Carbon Dioxide Cycle Recuperators
,”
Appl. Therm. Eng.
,
181
, p.
116030
.
21.
Sundberg
,
J.
,
2006
, “
Heat Transfer Correlations for Gas Turbine Cooling
,”
Linköpings Universitet
.
22.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
23.
Kim
,
K. Y.
, and
Shin
,
D. Y.
,
2008
, “
Optimization of a Staggered Dimpled Surface in a Cooling Channel Using Kriging Model
,”
Int. J. Therm. Sci.
,
47
(
11
), pp.
1464
1472
.
24.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
8
), pp.
839
847
.
25.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
,
2003
, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
11
18
.
26.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
, pp.
3
8
.
27.
Kilpatrick
,
E.
, and
Kim
,
S.
,
2018
, “
Roughness Effects on Flow and Heat Transfer in a Ribbed Duct Considering Additive Manufacturing
,”
Proceedings of GPPS Forum 18 Global Power and Propulsion Society
,
Zurich, Switzerland
,
Jan. 10–12
.
28.
Schäffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
J. Eng. Power
,
102
(
1
), pp.
5
12
.
29.
Bammert
,
K.
, and
Sandstede
,
H.
,
1976
, “
Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,”
J. Eng. Power
,
98
(
1
), pp.
29
36
.
30.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
31.
Hu
,
K. S.-Y.
,
Chi
,
X.
,
Shih
,
T. I.-P.
,
Chyu
,
M.
, and
Crawford
,
M.
,
2018
, “
Steady RANS of Flow and Heat Transfer in a Smooth and Pin-Finned U-Duct With a Trapezoidal Cross Section
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
, pp.
1
11
.
32.
Lemmon
,
E. W.
,
Bell
,
I. H.
, and
Huber
,
M. L.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
. .
33.
Munson
,
B. R.
,
Young
,
D. F.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2009
,
Fundamentals of Fluid Mechanics
,
John Wiley & Sons, Inc.
,
New York
.
34.
Nikuradse
,
J.
,
1950
, “
Laws of Flow in Rough Pipes
”,
NACA Technical Memorandum 1292
.
35.
Norris
,
R. H.
,
General Electric Company. Research and Development Center
,1
970
, “Some Simple Approximate Heat-Transfer Correlations for Turbulent Flow in Ducts With Rough Surfaces,”
Augmentation of Convective Heat and Mass Transfer
,
A. E.
Bergles
, and
R. L.
Webb
, eds.,
American Society of Mechanical Engineers
,
New York
, pp.
16
26
.
36.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2011
2020
.
37.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.
38.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
39.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.