Abstract

The stability limit of a tip-stalling axial compressor is sensitive to the magnitude of the near-casing blockage. In transonic compressors, the presence of the passage shock could be a major cause for the blockage. Identification and elimination of this blockage could be a key to improving the stability limit of the compressor. In this article, using numerical simulation, the near-casing blockage within the transonic rotor, NASA Rotor 37, is quantified using a blockage parameter. For a smooth casing, the blockage at conditions near stall is maximum at about 20% of the tip axial chord downstream of the tip leading edge. This maximum blockage location is found to be consistent with the location of the passage shock–tip leakage vortex interaction. A datum single casing groove design that minimizes the peak blockage is found through an optimization approach. The stall margin improvement of the datum casing groove is about 0.6% with a negligible efficiency penalty. Furthermore, the location of the casing groove is varied upstream and downstream of the datum location. It is shown that the stability limit of the compressor is best improved when the blockage is reduced upstream of the peak blockage location. This article also discusses the prospects of a multigroove casing configuration.

References

1.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.
2.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
3.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2012
, “
An Explanation for Flow Features of Spike Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
4.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
5.
Bailey
,
E. E.
,
1972
, “
Effect of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor
,” NASA Technical Report, University of Sussex, Report No. NASA-TM-X 2459, E-6560, p.
17
, https://ntrs.nasa.gov/citations/19720007335, Accessed October 15, 2019.
6.
Muller
,
M. W.
,
Schiffer
,
H.-P.
, and
Hah
,
C.
,
2007
, “
Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air. Volume 6: Turbo Expo 2007, Parts A and B
,
Montreal, Canada
,
May 14–17
, pp.
115
124
.
7.
Sakuma
,
Y.
,
Watanabe
,
T.
,
Himeno
,
T.
,
Kato
,
D.
,
Murooka
,
T.
, and
Shuto
,
Y.
,
2013
, “
Numerical Analysis of Flow in a Transonic Compressor With a Single Circumferential Casing Groove: Influence of Groove Location and Depth on Flow Instability
,”
ASME J. Turbomach.
,
136
(
3
), p.
031017
.
8.
Chen
,
H.
,
Huang
,
X.
,
Shi
,
K.
,
Fu
,
S.
,
Ross
,
M.
,
Bennington
,
M. A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
McNulty
,
S.
, and
Wadia
,
A.
,
2013
, “
A Computational Fluid Dynamics Study of Circumferential Groove Casing Treatment in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
136
(
3
), p.
031003
.
9.
Ross
,
M. H.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Chen
,
H.
, and
Shi
,
K.
,
2017
, “
Axial Compressor Stall, Circumferential Groove Casing Treatment, and the Tip-Clearance Momentum Flux
,”
J. Propul. Power
,
34
(
1
), pp.
146
152
.
10.
Suder
,
K. L.
,
1996
, “
Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor With Respect to the Development of Blockage and Loss
,” NASA Technical Memorandum (NASA-TM-107310, E-10403), University of Sussex, https://ntrs.nasa.gov/citations/19970001675, Accessed December 12, 2016.
11.
Denton
,
J. D.
,
1997
, “
Lessons From Rotor 37
,”
J. Thermal Sci.
,
6
(
1
), pp.
1
13
. .
12.
ANSYS CFX 17.1 Documentation
,
2016
, Ansys Academic Research Mechanical and CFD, Release 17.1, CFX-Solver Modelling Guide, ANSYS, Inc.
13.
Dunham
,
J.
,
1998
, “
CFD Validation for Propulsion System, Advisory Group for Aerospace Research & Development (AGARD) Advisory Report, AGARD-AR-355
,” University of Sussex, https://www.sto.nato.int/publications/AGARD/AGARD-AR-355/AGARD-AR-355.pdf, Accessed January 12, 2017.
14.
Bruna
,
D.
, and
Turner
,
M. G.
,
2013
, “
Isothermal Boundary Condition at Casing Applied to the Rotor 37 Transonic Axial Flow Compressor
,”
ASME J. Turbomach.
,
135
(
3
), p.
034501
.
15.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
16.
Mustaffa
,
A. F.
, and
Kanjirakkad
,
V.
,
2020
, “
Casing-Groove Optimisation for Stall Margin in a Transonic Compressor Rotor
,”
Int. J. Numer. Methods Heat Fluid Flow.
,
31
(
2
), pp.
694
717
.
You do not currently have access to this content.