Abstract

The three-pass turbulated serpentine channel has many applications in internal turbine blade systems. However, the studies on the effects of the outflow ratio are lacking, which decreases the thermal analysis accuracy in such a model. To fill this gap, outflow-ratio experiments are conducted on the Nusselt number distributions of a three-pass turbulated channel. The current experimental results can guide and optimize the turbine blade internal cooling system. The results show with the mass flow of the lateral outlet increasing, the low-heat transfer region on the lateral-outflow passage gradually expands. Increasing the mass flow of the lateral outlet heightens the spanwise-averaged Nusselt number of the lateral-outflow passage, especially under the static condition. In the lateral-outflow passage, the rotation significantly improves the Nusselt number uniformity, particularly at the high mass flowrate of the lateral holes; the rotation shows slight effects on the spanwise-averaged Nusselt number of the lateral-outflow passage at low rotation numbers, whereas the profound influence is observed for the spanwise-averaged Nusselt number under high rotation-number condition. The rotation can profoundly increase the pressure coefficient leading to a reduced pressure loss with the rotation number increasing from 0.03 to 0.06.

References

1.
Han
,
J. C.
, and
Chen
,
H. C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Turbulators
,”
J. Propul. Power
,
22
(
2
), pp.
226
248
.
2.
Wright
,
L. M.
, and
Gohardani
,
A. S.
,
2009
, “
Effects of Coolant Ejection in Rectangular and Trapezoidal Trailing Edge Cooling Passages
,”
J. Thermophys. Heat Transfer
,
23
(
2
), pp.
316
326
.
3.
Kumaran
,
T. K.
,
Han
,
J. C.
, and
Lau
,
S. C.
,
1991
, “
Augmented Heat Transfer in a Pin Fin Channel With Short or Long Ejection Holes
,”
Int. J. Heat Mass Transfer
,
34
(
10
), pp.
2617
2628
.
4.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channel With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
590
596
.
5.
Han
,
J. C.
,
Zhang
,
P.
, and
Lee
,
C. P.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
(
4
), pp.
872
880
.
6.
Huang
,
S. C.
, and
Liu
,
Y. H.
,
2012
, “
High Rotation Number Effect on Heat Transfer in a Leading Edge Cooling Channel With Three Channel Orientations
,” ASME Paper No. GT2012-68389.
7.
Schroll
,
M.
,
Lange
,
L.
, and
Elfert
,
M.
,
2011
, “
Investigation of the Effect of Rotation on the Flow in a Two-Pass Cooling System With Smooth and Turbulated Walls Using PIV
,” ASME Paper No. GT2011-46427.
8.
Cunha
,
F. J.
, and
Chyu
,
M. K.
,
2006
, “
Trailing-Edge Cooling for Gas Turbines
,”
J. Propul. Power
,
22
(
2
), pp.
286
300
.
9.
Qiu
,
L.
,
Deng
,
H.
, and
Tao
,
Z.
,
2012
, “
Effect of Channel Orientation in a Rotating Wedge-Shaped Cooling Channel With Pin Fins and Ribs
,” ASME Paper No. GT2012-68439.
10.
Tao
,
Z.
,
Qiu
,
L.
, and
Deng
,
H.
,
2015
, “
Heat Transfer in a Rotating Smooth Wedge Shaped Channel With Lateral Fluid Extraction
,”
Appl. Therm. Eng.
,
87
(
5
), pp.
47
55
.
11.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071701
.
12.
Liu
,
Y. H.
,
Huh
,
M.
, and
Han
,
J. C.
,
2012
, “
High Rotation Number Effect on Heat Transfer in a Trailing Edge Channel With Tapered Ribs
,”
Int. J. Heat Fluid Flow.
,
33
(
1
), pp.
182
192
.
13.
Cheah
,
S. C.
, and
Iacovides
,
H.
,
1994
, “
LDA Investigation of the Flow Development Through Rotating U-Duct
,” ASME Paper No. 94-GT-226.
14.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M University
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.
15.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis Books Inc.
,
New York
.
16.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
17.
Wagner
,
J.
,
Johnson
,
B.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,” ASME Paper No. 92-GT191.
18.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
912
920
.
19.
Lee
,
E.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Rotating Rectangular Channels With V-Shaped and Angled Ribs
,”
J. Thermophys. Heat Transfer
,
19
(
1
), pp.
48
56
.
20.
Park
,
C. W.
,
Lau
,
S. C.
, and
Kukreja
,
R. T.
,
1998
, “
Heat/Mass Transfer in a Rotating Two-Pass Square Channel With Transverse Ribs
,”
ASME J. Heat Transfer
,
12
(
1
), pp.
80
86
.
21.
Park
,
C. W.
,
Yoon
,
C.
, and
Lau
,
S. C.
,
2000
, “
Heat(Mass) Transfer in a Diagonally Oriented Rotating Two-Pass Channels With Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
208
211
.
22.
Parsons
,
B. V.
,
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1994
, “
Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 90 deg Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
37
(
9
), pp.
1141
1420
.
23.
Parsons
,
B. V.
,
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1994
, “
Effects of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1151
1159
.
24.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passage With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.
25.
El-Husayni
,
H. A.
,
Taslim
,
M. E.
, and
Kercher
,
D. M.
,
1994
, “
Experimental Heat Transfer Investigation of Stationary and Orthogonally Rotating Asymmetric and Symmetric Heated Smooth and Turbulated Channels
,”
ASME J. Turbomach.
,
116
(
1
), pp.
124
132
.
26.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60 deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
272
280
.
27.
Bunker
,
R. S.
,
Wetzel
,
T. G.
, and
Rigby
,
D. L.
,
2002
, “
Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade—Part 1: Experimental Measurements
,” ASME Paper No. GT2002-30212.
28.
Coletti
,
F.
,
Armellini
,
A.
,
Arts
,
T.
, and
Scholtes
,
C.
,
2008
, “
Aero-thermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part II: Heat Transfer Analysis
,” ASME Paper No. GT2008-50695.
29.
Hwang
,
J. J.
,
Lai
,
Y. D.
, and
Tsia
,
Y. P.
,
1999
, “
Heat Transfer and Pressure Drop in Pin Fin Trapezoidal Ducts
,”
ASME J. Turbomach.
,
121
(
2
), pp.
264
271
.
30.
Hwang
,
J. J.
, and
Lu
,
C. C.
,
2001
, “
Lateral-flow Effects on Endwall Heat Transfer and Pressure Drop in a Pin-Fin Trapezoidal Duct of Various Pin Shapes
,”
ASME J. Turbomach.
,
123
(
1
), pp.
133
139
.
31.
Schuler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
Von Wolfersforf
,
J.
, and
Neumann
,
S. O.
,
2010
, “
The Effect of Side Wall Mass Extraction on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021002
.
32.
Zhang
,
B. L.
,
Zhu
,
H. R.
, and
Liu
,
C. L.
,
2019
, “
Experimental and Numerical Research on Heat Transfer and Flow Characteristics in Two-Turn Turbulated Serpentine Channel With Lateral Outflow
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
116
128
.
33.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three Temperature Convection Situations
,” ASME Paper No. 91-GT-345.
34.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
G. M.
,
2003
, “
A Novel Transient Liquid Crystal Technique to Determine Heat Transfer Coefficient Distributions and Adiabatic Wall Temperature in a Three Temperature Problem
,”
ASME J. Turbomach.
,
125
(
3
), pp.
538
546
.
35.
Huang
,
S. C.
,
Wang
,
C. C.
, and
Liu
,
Y. H.
,
2017
, “
Heat Transfer Measurement in a Rotation Cooling Channel With Staggered and Inline Pin-Fin Arrays Using Liquid Crystal and Stroboscopy
,”
Int. J. Heat Mass Transfer
,
115
(
A
), pp.
364
376
.
36.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
A New Cooling Design for rib Roughened Two-Pass Channel Having Positive Effects of Rotation on Heat Transfer Enhancement on Both Pressure and Suction Side Internal Walls of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
115
(
B
), pp.
6
20
.
37.
Liu
,
C.
,
Zhu
,
H. R.
,
Bai
,
J.
, and
Xu
,
D. C.
,
2011
, “
Film Cooling Performance of Converging-Slot Holes With Different Exit-Entry Area Ratios
,”
ASME J. Turbomach.
,
133
(
1
), p.
011020
.
38.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.
39.
Jiang
,
H.
,
Chen
,
W.
,
Zhang
,
Q.
, and
He
,
L.
,
2015
, “
Analytical-Solution Based Corner Correction for Transient Thermal Measurement
,”
ASME J. Turbomach.
,
137
(
11
), p.
111302
.
40.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1998
, “
Heat Transfer Measurements to a Gas Turbine Cooling Passage With Inclined Ribs
,”
ASME J. Turbomach.
,
120
(
1
), pp.
63
69
.
41.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
42.
Kline
,
S. J.
, and
Mcclintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
43.
Zhang
,
B. L.
,
Zhu
,
H. R.
,
Guo
,
T.
,
Yao
,
C. Y.
, and
Fu
,
Z. Y.
,
2019
, “
Numerical Study on Heat Transfer and Flow Characteristics in Double Turning Areas Ribbed Serpentine Channel With Lateral Outflow
,” ASME Paper No. GT2019-90143.
You do not currently have access to this content.