The synchronous application of flow control in the presence of unsteady wakes was studied on a highly loaded low pressure turbine blade. At low Reynolds numbers, the blade exhibits a nonreattaching separation bubble under steady flow conditions without upstream wakes. Unsteady wakes from an upstream vane row are simulated with a moving row of bars. The separation zone is modified substantially by the presence of unsteady wakes, producing a smaller separation zone and reducing the area-averaged wake total pressure loss by more than 50%. The wake disturbance accelerates transition in the separated shear layer but stops short of reattaching the flow. Rather, a new time-averaged equilibrium location is established for the separated shear layer. The focus of this study was the application of pulsed flow control using two spanwise rows of discrete vortex generator jets. The jets were located at 59% , approximately the peak location, and at 72% . The most effective separation control was achieved at the upstream location. The wake total pressure loss decreased 60% from the wake-only level and the distribution fully recovered its high Reynolds number shape. The jet disturbance dominates the dynamics of the separated shear layer, with the wake disturbance assuming a secondary role only. When the pulsed jet actuation was initiated at the downstream location, synchronizing the jet to actuate between wake events was key to producing the most effective separation control. Evidence suggests that flow control using vortex generator jets (VGJs) will be effective in the highly unsteady low pressure turbine environment of an operating gas turbine, provided the VGJ location and amplitude are adapted for the specific blade profile.
Skip Nav Destination
Article navigation
Research Papers
The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes
Jeffrey P. Bons,
Jeffrey P. Bons
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Search for other works by this author on:
Jon Pluim,
Jon Pluim
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Search for other works by this author on:
Kyle Gompertz,
Kyle Gompertz
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Search for other works by this author on:
Matthew Bloxham,
Matthew Bloxham
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Search for other works by this author on:
John P. Clark
John P. Clark
Propulsion Directorate,
Air Force Research Laboratory
, Wright-Patterson AFB, OH 45433
Search for other works by this author on:
Jeffrey P. Bons
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Jon Pluim
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Kyle Gompertz
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
Matthew Bloxham
Department of Aerospace Engineering,
Ohio State University
, Columbus, OH 43210
John P. Clark
Propulsion Directorate,
Air Force Research Laboratory
, Wright-Patterson AFB, OH 45433J. Turbomach. May 2012, 134(3): 031009 (11 pages)
Published Online: July 14, 2011
Article history
Received:
August 22, 2008
Revised:
June 26, 2009
Online:
July 14, 2011
Published:
July 14, 2011
Citation
Bons, J. P., Pluim, J., Gompertz, K., Bloxham, M., and Clark, J. P. (July 14, 2011). "The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes." ASME. J. Turbomach. May 2012; 134(3): 031009. https://doi.org/10.1115/1.4000488
Download citation file:
Get Email Alerts
Related Articles
Synchronizing Separation Flow Control With Unsteady Wakes in a Low-Pressure Turbine Cascade
J. Turbomach (April,2009)
Separated Flow Transition on an LP Turbine Blade With Pulsed Flow Control
J. Turbomach (April,2008)
Numerical Study of Active Flow Control for a Transitional Highly Loaded Low-Pressure Turbine
J. Fluids Eng (September,2006)
The Effect of Wake Passing on a Flow Separation in a Low-Pressure Turbine Cascade
J. Fluids Eng (March,2004)
Related Proceedings Papers
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition