Blade failure in turbomachinery is frequently caused by an excessive resonant response. Forced response of the blades originates from unsteady fluid structure interactions as conditioned in the inlet section by duct bends, struts, or inlet guide vanes. This paper presents the computational part of a research effort that focuses on the blade forced response in a centrifugal compressor. Unsteady fluid flow simulations are used to quantify the forcing function acting on the compressor blades due to inlet flow distortion. The measured inlet flow distribution is applied as inlet boundary conditions in the computation. The unsteady investigation provided the temporal evolution of the distorted flow through the compressor. The time-resolved blade pressure distribution showed the temporal evolution of the dynamic load on the blade surface caused by the inlet distortion. The results suggest that the forcing function is most sensitive in the leading edge region due to inlet angle variations. Toward the impeller stability line the increase in incidence caused separation on the suction side of the main blade and therefore considerably altered the amplitude and the phase angle of the unsteadiness. The investigation of the effect of idealizing the inlet flow distribution on the forcing function showed an increase in the peak amplitude of approximately 30% compared with the actual inlet flow distribution.

1.
Came
,
P. M.
, and
Robinson
,
C. J.
, 1999, “
Centrifugal Compressor Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
213
, pp.
139
155
.
2.
Borgogno
,
R.
, and
Barmpalias
,
K. G.
, 2008, “
Evaluation and Optimization of a Novel Aero Engine Cycle
,” Semester Project, Turbomachinery Laboratory, ETH Zurich.
3.
Srinivasan
,
A. V.
, 1997, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
4
), pp.
742
775
.
4.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
, 2004,
Internal Flow Concepts and Applications
,
Cambridge University Press
,
Cambridge
.
5.
Cumpsty
,
N. A.
, 2004,
Compressor Aerodynamics
,
Krieger
,
Malabar, FL
.
6.
Ariga
,
I.
,
Kasai
,
N.
,
Masuda
,
S.
,
Watanabe
,
Y.
, and
Watanabe
,
I.
, 1983, “
The Effect of Inlet Distortion on the Performance—Characteristics of a Centrifugal Compressor
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
223
230
.
7.
Engeda
,
A.
,
Kim
,
Y.
,
Aungier
,
R.
, and
Direnzi
,
G.
, 2003, “
The Inlet Flow Structure of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance
,”
ASME Trans. J. Fluids Eng.
0098-2202,
125
, pp.
779
785
.
8.
Dickmann
,
H. P.
,
Wimmel
,
T. S.
,
Szwedowicz
,
J.
,
Filsinger
,
D.
, and
Roduner
,
C. H.
, 2006, “
Unsteady Flow in a Turbocharger Centrifugal Compressor: Three-Dimensional Computational Fluid Dynamics Simulation and Numerical and Experimental Analysis of Impeller Blade Vibration
,”
ASME J. Turbomach.
0889-504X,
128
(
3
), pp.
455
465
.
9.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W. P.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
, 2000, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1036
1054
.
10.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Unsteady, 3-Dimensional Flow Measurements Using a Miniature Virtual 4-Sensor Fast Response Aerodynamic Probe (FRAP)
,” ASME Paper No. GT2003-38128.
11.
Kammerer
,
A.
, and
Abhari
,
R. S.
, 2008, “
Experimental Study on Impeller Blade Vibration During Resonance—Part 1: Blade Vibration Due to Inlet Flow Distortion
,” ASME Paper No. GT2008-50466.
12.
Schleer
,
M.
,
Mokulys
,
T.
, and
Abhari
,
R. S.
, 2003, “
Design of a High Pressure-Ratio Centrifugal Compressor for Studying Reynolds Number Effects
,”
IMechE Conf. Trans.
1356-1448,
4
, pp.
391
404
.
13.
ANSYS, Inc.
, 2004, CFX-5.7 User Manual.
14.
Schleer
,
M.
, 2006, “
Flow Structure and Stability of a Turbocharger Centrifugal Compressor
,” Fortschr.-Ber. VDI Reihe 7 Nr. 484, VDI Verlag, Düsseldorf.
15.
Dean
,
R. C.
, and
Senoo
,
Y.
, 1960, “
Rotating Wakes in Vaneless Diffusers
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
563
574
.
16.
Mazzawy
,
R. S.
, 1977, “
Multiple Segment Parallel Compressor Model for Circumferential Flow Distortion
,”
ASME J. Eng. Power
0022-0825,
99
(
2
), pp.
288
296
.
You do not currently have access to this content.