Abstract
This paper describes a novel way of prescribing computational fluid dynamics (CFD) boundary conditions for axial-flow compressors. The approach is based on extending the standard single passage computational domain by adding an intake upstream and a variable nozzle downstream. Such a route allows us to consider any point on a given speed characteristic by simply modifying the nozzle area, the actual boundary conditions being set to atmospheric ones in all cases. Using a fan blade, it is shown that the method not only allows going past the stall point but also captures the typical hysteresis loop behavior of compressors.