In the early development of gas turbines, many empirical design rules were used; for example in obtaining fluid deflection using the deviation from blading angles, in the assumption of zero radial velocities (so-called radial equilibrium) and in expressions for clearance loss (the Lakshminarayana formulas). The validity of some of these rules, and the basic fluid mechanics behind them, is examined by use of modern ideas and computational fluid dynamics (CFD) codes. A current perspective of CFD in design is given, together with a view on future developments.

1.
Lakshminarayana, B., 1996, Fluid Dynamics and Heat Transfer in Turbomachinery, John Wiley and Sons, New York.
2.
Cumpsty, N. A., 1989, Compressor Aerodynamics, Longman, London.
3.
Howell, A. R., 1942, “The Present Basis of Axial Flow Compressor Design: Part I—Cascade Theory and Performance,” Aeronautical Research Council R. and M. No. 2095.
4.
Carter, A. D. S., and Hughes, H. P., 1950, “A Theoretical Investigation of the Effect of Profile Shape on the Performance of Aerofoils in Cascade,” Aeronautical Research Council R. and M. No. 2384.
5.
Lieblein
,
S.
,
1959
, “
Loss and Stall Analysis of Compressor Cascades
,”
ASME J. Basic Eng.
,
81
, p.
3
3
.
6.
Whittle
, Sir,
Frank
,
1945
, “
The Early History of the Whittle Jet Propulsion Gas Turbine
,”
Proc. Inst. Mech. Eng.
,
152
, pp.
419
535
.
7.
Ainley, D. G., and Mathieson, G. C. R., 1955, “An Examination of the Flow and Pressure Losses in Blade Rows of Axial Flow Turbines,” Aeronautical Research Council R. and M. 2891.
8.
Shapiro, A. H., 1953, The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press, New York.
9.
Wu
,
Chung-hua
, and
Brown
,
C. A.
,
1952
, “
A Theory of the Direct and Inverse Problems of Compressible Flow Past Cascade of Arbitrary Aerofoils
,”
J. Aeronaut. Sci.
,
pp.
183
196
.
10.
Stanitz, J. D., 1952, “Design of Two-dimensional Channels With Prescribed Velocity Distributions Along the Channel Walls,” NACA Tech. Notes 2593, 2595.
11.
Stanitz, J. D., 1951, “Approximate Design Method for High-Solidity Blade Elements in Compressors and Turbines,” NACA Tech. Note 2408.
12.
Weinig, F., 1935, Die Stromung um die Schaufeln von Turbomaschinen, Joh. Ambr. Barth, Leipzig.
13.
Kraft
,
H.
,
1958
, “
Development of a Laminar Wing Type Turbine Bucket
,”
ZAMP
,
404
.
14.
Garrick, J. E., 1944, “On the Plane Potential Flow Past a Lattice of Arbitrary Aerofoils,” NACA Report 778.
15.
Schlicting, H., and Scholz, N., 1951, Uber die Theoretische Berechung der Stromungsverluste eines ebenen Schaufelgitters, Ingen.-Arch. Bd. XIX Heft. 1.
16.
Martensen
,
E.
,
1959
, “
The Calculation of the Pressure Distribution on a Cascade of Thick Aerofoils by Means of Fredholm Integral Equations of the Second Kind
,”
Arch. Ration. Mech. Anal.
,
3
, pp.
251
270
.
17.
Gostelow, J. P., 1962, “Potential Flow Through Cascades-Extension to an Exact Theory,” Aeronautical Research Council, CP 808.
18.
Hobson, D. E., 1979, “Shock Free Transonic Flow in Turbomachinery Cascade,” Cambridge University Report CUED/A Turbo 65 (also Ph.D. thesis Cambridge University).
19.
Stratford
,
B. S.
,
1959
, “
The Prediction of Separation of the Turbulent Boundary Layer. An Experimental Flow With Zero Skin Friction Throughout Its Region of Pressure Rise
,”
J. Fluid Mech.
,
pp.
1
16
, 17–35.
20.
Le Foll, J., 1976, Inverse Method for Optimised Blading Calculations, VKI Lecture Series 84.
21.
Hawthorne
,
W. R.
,
1951
, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. London, Ser. A
,
206
, p.
374
374
.
22.
Hawthorne
,
W. R.
,
1955
, “
Rotational Flow Through Cascades, Part I—The Components of Vorticity
,”
Q. J. Mech. Appl. Math.
,
8
, p.
266
266
.
23.
Smith
,
L. H.
,
1953
, “
Secondary Flow in Axial Flow Turbomachinery
,”
Trans. ASME
,
77
, p.
1065
1065
.
24.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
, pp.
21
28
.
25.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Gas Turbines Power
,
A92
, p.
252
252
.
26.
Hah
,
C. A.
,
1984
, “
Navier-Stokes Analysis of Three-Dimensional Turbulent Flows Inside Turbine Blade Rows at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
421
429
.
27.
Smith
,
L. H.
,
1962
, discussion of
Proc. Inst. Mech. Eng.
,
176
(
30
), p.
789
789
.
28.
Stubner
,
A. W.
,
1962
, discussion of
Proc. Inst. Mech. Eng.
,
176
(
30
), p.
789
789
.
29.
Marsh, H., 1968, “A Computer Program for the Through Flow Fluid Mechanics in an Arbitrary Turbomachine Using a Matrix Method,” Aeronautical Research Council R. and M. No. 3509.
30.
Wu, Chung-Hua, 1952, “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachine in Radial, Axial and Mixed Flow Types,” NACA Tech. Note 2604.
31.
Rains, D. A., 1954, “Tip Clearance Flows in Axial Compressors and Pumps,” California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories, Report No. 5.
32.
Dean, R. C., 1954, “Secondary Flow in Axial Compressors,” Sc.D thesis, Gas Turbine Laboratory, M.I.T., Cambridge, MA.
33.
Lakshminarayana, B., and Horlock, J. H., 1967, “Leakage and Secondary Flow in Compressor Cascades,” Aeronautical Research Council, R. and M. 3483.
34.
Lakshminarayana
,
B.
,
1970
, “
Predicting the Tip Clearance Flow in Axial Flow Turbomachines
,”
ASME J. Basic Eng.
,
92
, pp.
467
482
.
35.
Constant, H., 1939, “Performance of Cascades of Aerofoils, Royal Aircraft Establishment,” Note No. E3696, Aeronautical Research Council, Report No. 4155.
36.
Taylor, E. S., 1957, “Problem of the Convergent Nozzle,” Technical Note (unpublished) Gas Turbine Laboratory, M.I.T., Cambridge, MA.
37.
Horlock, J. H., 1973, Axial Flow Turbines, Krieger Publishing Company, Melbourne, FL.
38.
Horlock
,
J. H.
, and
Marsh
,
H.
,
1971
, “
Flow Models for Turbomachinery
,”
J. Mech. Eng. Sci.
,
13
, pp.
358
368
.
39.
Katsanis T., 1968, “Computer Program for Calculating Velocities and Streamlines on a Blade-to-Blade Stream Surface of a Turbomachine,” NASA TND 4525.
40.
Wilkinson, D. H., 1972, “Calculation of Blade-to-Blade Flow in a Turbomachine by Streamline Curvature,” Aeronautical Research Council, R. and M. 3704.
41.
Novak, R. A., and Haymann-Haber, G., 1982, “A Mixed-Flow Cascade Passage Design Procedure Based on a Power Series Expansion,” ASME Paper 82-GT-121.
42.
Smith
,
L. H.
,
2002
, “
Axial Compressor Aerodesign Evolution at General Electric
,”
ASME J. Turbomach.
,
124
, pp.
321
330
.
43.
Miller, M. J., and Serovy, G. K., 1974, “Deviation Estimation for Axial-Flow Compressors Using Inviscid Flow Solutions,” ASME Paper 74-GT-74.
44.
Wang
,
L. C.
,
Hetherington
,
R.
, and
Goulas
,
A.
,
1983
, “
The Calculation of Deviation Angle in Axial Flow Compressor Cascades
,”
ASME J. Eng. Gas Turbines Power
,
105
, pp.
474
479
.
45.
Denton
,
J. D.
,
1991
, “
The Calculation of Threedimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
.
46.
Howell
,
A. R.
,
1947
, “
Fluid Dynamics of Axial Compressors
,”
Proc. Inst. Mech. Eng.
, War Emergency Issue,
12
.
47.
Smith, L. H., 1969, “Casing Boundary Layers in Multistage Compressors, Flow Research in Blading,” L. S. Dzung, ed., Elsevier, New York.
48.
Bolger, J. J., and Horlock, J. H., 1995, “Predictions of the Flow in Repeating Stages of Axial Compressors Using Navier-Stokes Solvers,” ASME Paper 95-GT-199.
49.
Howard
,
M. A.
,
Ivey
,
P. C.
,
Barton
,
J. P.
, and
Young
,
K. F.
,
1994
, “
End Wall Effects at Two Tip Clearances in a Multi-Stage Axial Flow Compressor With Controlled Diffusion Blading
,”
ASME J. Turbomach.
,
106
, pp.
635
647
.
50.
Horlock
,
J. H.
,
2000
, “
The Determination of End-Wall Blockage in Axial Flow Compressors—A Comparison Between Various Approaches
,”
ASME J. Turbomach.
,
122
, pp.
218
224
.
51.
Harrison, S., 1989, “Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades,” ASME Paper 89-GT-47.
52.
Denton, J. D., and Xu, L., 2002, “The Effects of Lean and Sweep on Transonic Fan Performance,” ASME Paper GT-2002-30327.
You do not currently have access to this content.