This paper presents the first experimental measurements on an engine representative nozzle guide vane, of a new film-cooling hole geometry, a con¯vergings¯lot-hole¯ or console. The patented console geometry is designed to improve the heat transfer and aerodynamic performance of turbine vane and rotor blade cooling systems. These experiments follow the successful validation of the console design in low-speed flat-plate tests described in Part 1 of this paper. Stereolithography was used to manufacture a resin model of a transonic, engine representative nozzle guide vane in which seven rows of previously tested fan-shaped film-cooling holes were replaced by four rows of consoles. This vane was mounted in the annular vane ring of the Oxford cold heat transfer tunnel for testing at engine Reynolds numbers, Mach numbers and coolant to mainstream momentum flux ratios using a heavy gas to simulate the correct coolant to mainstream density ratio. Heat transfer data were measured using wide-band thermochromic liquid crystals and a modified analysis technique. Both surface heat transfer coefficient and the adiabatic cooling effectiveness were derived from computer-video records of hue changes during the transient tunnel run. The cooling performance, quantified by the heat flux at engine temperature levels, of the console vane compares favourably with that of the previously tested vane with fan-shaped holes. The new console film-cooling hole geometry offers advantages to the engine designer due to a superior aerodynamic efficiency over the fan-shaped hole geometry. These efficiency measurements are demonstrated by results from midspan traverses of a four-hole pyramid probe downstream of the nozzle guide vane.

1.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low Speed Flat-Plate Heat Transfer and Loss,” ASME Paper No. 2001-GT-0126
,
ASME J. Turbomach.
,
124
, pp.
453
460
.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
3.
Ito
,
S.
,
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
, pp.
476
481
.
4.
Schwarz
,
S. G.
, and
Goldstein
,
R. J.
,
1989
, “
The Two-Dimensional Behavior of Film Cooling Jets on Concave Surfaces
,”
ASME J. Turbomach.
,
111
, pp.
124
130
.
5.
Ko, S. Y., Yao, Y. Q., Xia, B., and Tsou, F. K., 1986, “Discrete-Hole Film Cooling Characteristics over Concave and Convex Surfaces,” Proc. 8th International Heat Transfer Conference, 3, Hemisphere Publishing Corp., New York, NY, pp. 1297–1301.
6.
Ligrani
,
P. M.
, and
Camci
,
C.
,
1985
, “
Adiabatic Film Cooling Effectiveness from Heat Transfer Measurements in Compressible, Variable-Property Flow
,”
ASME J. Heat Transfer
,
107
, pp.
313
320
.
7.
Arts
,
T.
, and
Bourguignon
,
A. E.
,
1990
, “
Behavior of a Coolant Film with Two Rows of Holes Along the Pressure Side of a High-Pressure Nozzle Guide Vane
,”
ASME J. Turbomach.
,
112
, pp.
512
521
.
8.
Camci
,
C.
, and
Arts
,
T.
,
1985
, “
Short Duration Measurements and Numerical Simulation of Heat Transfer Along the Suction Side of a Film Cooled Gas Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
991
997
.
9.
Drost, U., Bolcs, A., Hoffs, A., 1997, “Utilization of the Transient Liquid Crystal Technique for Film Cooling Effectiveness and Heat Transfer Investigations on a Flat Plate and a Turbine Airfoil,” ASME Paper No. 97-GT-28.
10.
Schlichting, H., and Gersten, K., 2000, Boundary Layer Theory, Springer, Berlin, Germany.
11.
Martinez-Botas, R. F., Main, A. J., Lock, G. D., and Oldfield, M. L. G., 1993, “A Cold Heat Transfer Tunnel for Gas Turbine Research on an Annular Cascade,” ASME Paper No. 93-GT-248.
12.
Moss, R. W. and Oldfield, M. L. G., 1991, “Measurements of Hot Combustor Turbulence Spectra,” ASME Paper No. 91-GT-351.
13.
Springer
,
A.
, 1998, “Evaluating Aerodynamic Characteristics of Wind-Tunnel Models Produced by Rapid Prototyping Methods,” J. Spacecr. Rockets, 35, No. 6.
14.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1989
, “
The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling
,”
ASME J. Turbomach.
,
111
, pp.
57
62
.
15.
Guo, S. M., Lai, C. C., Jeong, J. H., Jones, T. V., and Oldfield, M. L. G., 1997, “Use of Liquid Crystal Techniques to Measure Film Cooling Heat Transfer and Effectiveness,” 90th Symp. Propulsion and Energetics Panel, AGARD.
16.
Ireland, P. T., Wang, Z. W. and Jones T. V., 1993, “Liquid Crystal Heat Transfer Measurements,” von Karman Institute for Fluid Dynamics 1992–1993 Lecture Series.
17.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1987
, “
The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals
,”
J. Phys. E
,
20
, pp.
1195
1199
.
18.
Sargison, J. E., Guo, S. M., Oldfield, M. L. G., Lock G. D. and Rawlinson, A. J., 2000, “Use of Liquid Crystal Techniques for a Gas Turbine Film Cooling Study in a Transonic Tunnel,” Proc. 9th Int. Symp. Flow Visualisation, Heriot-Watt University, Edinburgh, Scotland.
19.
Gonzalez, R. C., and Woods, R. E., 1993, Digital Image Processing, Addison-Wesley.
20.
Jones, T. V., 1991, “Definition of Heat Transfer Coefficient in the Turbine Situation,” IMechE Paper No. C423/046, IMechE Turbomachinery Conf.
21.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
, pp.
349
354
.
22.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, McGraw-Hill, New York, NY.
23.
Schultz, D. L. and Jones, T. V., 1973, “Heat Transfer Measurements in Short-Duration Hypersonic Facilities,” AGARD AG-165.
24.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
1998
, “
The Application of Thin-Film Technology to Measure Turbine-Vane Heat Transfer and Effectiveness in a Film-Cooled, Engine-Simulated Environment
,”
Int. J. Heat Fluid Flow
,
19
, pp.
564
600
.
25.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
,
1987
, “
The Theory of Advanced Multi-layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transf.
,
30
, No.
6
, pp.
1159
1168
.
26.
Ainsworth
,
R. W.
,
Allen
,
J. L.
,
Davies
,
M. R. D.
,
Doorly
,
J. E.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
,
1989
, “
Developments in Instrumentation and Processing for Transient Heat Transfer Measurements in a Full Stage Model Turbine
,”
ASME J. Turbomach.
,
111
, pp.
20
27
.
27.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurement of Heat Transfer and Shear Stress
,”
Meas. Sci. Technol.
,
11
, pp.
969
986
.
28.
Lai, C. C., 1999, “Fully Film Cooled Nozzle Guide Vane Heat Transfer Measurement and Prediction,” D. Phil. thesis, University of Oxford, Oxford, UK.
29.
Rowbury, D. A., Oldfield, M. L. G., and Lock, G. D., 1997, “Engine-Representative Discharge Coefficients Measured in an Annular Nozzle Guide Vane Cascade,” ASME Paper No. 97-GT-99.
30.
Sen, B., Schmidt, D. L., and Bogard D. G., 1994, “Film Cooling with Compound Angle Holes: Heat Transfer,” ASME Paper No. 94-GT-311.
31.
Main A. J., 1994, “Annular Turbine Cascade Aerodynamics,” D. Phil. thesis, University of Oxford, Oxford, UK.
32.
Main
,
A. J.
,
Day
,
C. R. B.
,
Lock
,
G. D.
, and
Oldfield
,
M. L. G.
,
1996
, “
Calibration of a Four-Hole Pyramid Probe and Area Traverse Measurements in a Short-Duration Transonic Turbine Cascade Tunnel
,”
Exp. Fluids
,
21
, pp.
302
311
.
33.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
,
1999
, “
The Influence of Film Cooling on the Efficiency of an Annular Nozzle Guide Vane Cascade,” ASME Paper No. 97-GT-521
,
ASME J. Turbomach.
,
121
, pp.
145
151
.
34.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2000
, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
,
292
, pp.
117
129
.
35.
Dzung
,
L. S.
,
1971
, “
Konsistente Mittelwerte in der Theorie der Turbomaschinen fur Kompressible Medien
,”
BBC-Mitt.
,
58
, pp.
485
492
.
You do not currently have access to this content.