A time-accurate, two-dimensional, pressure-based, Navier–Stokes solver for incompressible flow is developed and used to carry out the numerical simulation of rotor–stator interaction. A low-Reynolds-number form of the two-equation turbulence model is used to account for the turbulence effects. In order to improve the accuracy of the numerical scheme, a central differencing plus an artificial dissipation scheme is implemented to provide precise control of numerical dissipation. An inner loop iteration scheme is used at each time step to account for the nonlinear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor–stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake. The predicted unsteady wake profiles are compared with the available experimental data and the agreement is good. The numerical results are interpreted to draw conclusions on the unsteady wake transport mechanism in the blade passage.

1.
Abhari
R. S.
,
Guenette
G. R.
,
Epstein
A. H.
, and
Giles
M. B.
,
1992
, “
Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, pp.
818
827
.
2.
Adachi
T.
, and
Murakami
Y.
,
1979
Three-Dimensional Velocity Distribution Between Stator Blade and Unsteady Force on a Blade Due to Passing Wakes
,”
Bulletin of the Japan Society of Mechanical Engineering
, Vol.
22
, No.
170
, p.
1074
1074
.
3.
Addison
J. S.
, and
Hodson
H. P.
,
1990
, “
Unsteady Transition in an Axial Flow Turbine. Part 1.
ASME JOURNAL OF TURBOMACHINERY
, Vol.
112
, pp.
206
221
.
4.
Basson
A. H.
, and
Lakshminarayana
B.
,
1994
, “
An Artificial Dissipation Formulation for a Semi-implicit Pressure Based Solution Scheme for Viscous and Inviscid Flows
,”
Int. J. Comp. Fluid Dynamics
, Vol.
2
, pp.
253
282
.
5.
Chien
K.-Y.
,
1982
, “
Prediction of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA Journal
, Vol.
20
, No.
1
, pp.
33
38
.
6.
Cousteix, J., and Houdeville, R., 1983, “Effects of Unsteadiness on Turbulent Boundary Layers,” Von Karman Institute for Fluid Dynamics, Lecture Series 1983-03.
7.
Dorney
D. J.
, et al.,
1992
, “
Unsteady Analysis of Hot Streak Migration in a Turbine Stage
,”
AIAA J. of Propulsion and Power
, Vol.
8
, pp.
520
520
.
8.
Dring, R. P., and Joslyn, H. D., 1985, “An Assessment of Single- and Multistage Compressor Flow Modeling,” Final Report for Naval Air Systems Command Contract No. N00014-84-C-0354, AD-B102 101.
9.
Fan
S.
,
Lakshminarayana
B.
, and
Barnett
M.
,
1993
, “
A Low-Reynolds Number K–ε Model for Unsteady Turbulent Boundary Layer Flows
,”
AIAA Journal
, Vol.
31
, No.
10
, pp.
1777
1784
.
10.
Fang
J.
, and
Atassi
H. M.
,
1993
, “
Numerical Solutions for Unsteady Subsonic Vortical Flows Around Loaded Cascades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
810
816
.
11.
Fleeter
S.
,
1973
, “
Fluctuating Lift and Moment Coefficients for Cascaded Airfoils in a Nonuniform Compressible Flow
,”
J. of Aircraft
, Vol.
10
, pp.
93
98
.
12.
Gostelow, J. P., 1984, Cascade Aerodynamics, Pergamon Press, New York.
13.
Gundy-Burlet
K. L.
,
Rai
M. M.
,
Stauter
R. C.
, and
Dring
R. P.
,
1991
, “
Temporally and Spatially Resolved Flow in a Two-Stage Axial Compressor: Part 2—Computational Assessment
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
227
232
.
14.
Hah, C., 1992, “Navier–Stokes Analysis of Three-Dimensional Unsteady Flows Inside Turbine Stages,” AIAA Paper No. 92-3211.
15.
Hall
K. C.
, and
Verdon
J. M.
,
1991
, “
Gust Response for Cascade Operating in Nonuniform Mean Flows
,”
AIAA Journal
, Vol.
29
, pp.
1463
1471
.
16.
Ho
Y.-H.
, and
Lakshminarayana
B.
,
1993
, “
Computation of Unsteady Viscous Flow Using an Efficient Algorithm
,”
AIAA Journal
, Vol.
31
, No.
12
, p.
2232
2232
.
17.
Ho, Y.-H., 1995, “Numerical Simulation of Steady and Unsteady Viscous Flows in Turbomachinery Blade Rows,” Ph.D. Thesis, The Pennsylvania State University.
18.
Hobson
G. V.
, and
Lakshminarayana
B.
,
1991
, “
Prediction of Cascade Performance Using an Incompressible Navier–Stokes Technique
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
561
572
.
19.
Hodson
H. P.
,
1985
a, “
An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
337
344
.
20.
Hodson
H. P.
,
1985
b, “
Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
467
476
.
21.
Issa
R. I.
,
1985
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. of Computational Physics
, Vol.
62
, pp.
40
65
.
22.
Kim
S.-W.
, and
Benson
T. J.
,
1992
, “
Comparison of the SMAC, PISO and Iterative Time-Advancing Schemes for Unsteady Flows
,”
Computers Fluids
, Vol.
21
, pp.
435
454
.
23.
Kunz
R. F.
, and
Lakshminarayana
B.
,
1992
, “
Three-Dimensional Navier–Stokes Computation of Turbomachinery Flows Using an Explicit Numerical Procedure and a Coupled k–ε Turbulence Model
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
114
, pp.
627
642
.
24.
Leonard
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
19
, pp.
59
98
.
25.
Manwaring
S. R.
, and
Fleeter
S.
,
1993
, “
Rotor Blade Unsteady Aerodynamic Gust Response to Inlet Guide Vane Wakes
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
197
206
.
26.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York.
27.
Pulliam
T. H.
,
1986
, “
Artificial Dissipation Models for the Euler Equations
,”
AIAA Journal
, Vol.
24
, No.
12
, pp.
1931
1940
.
28.
Rai
M. M.
,
1987
, “
Navier–Stokes Simulations of Rotor/Stator Interactions Using Patched and Overlaid Grids
,”
J. of Propulsion Power
, Vol.
3
, pp.
387
396
.
29.
Rao, K. V., Delaney, R. A., and Dunn, M. G., 1992, “Vane-Blade Interaction in a Transonic Turbine, Part I—Aerodynamics,” AIAA Paper No. 92-3323.
30.
Rhie
C. M.
, and
Chow
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA Journal
, Vol.
21
, No.
11
, pp.
1525
1532
.
31.
Stauter
R. C.
,
Dring
R. P.
, and
Carta
F. O.
,
1991
, “
Temporally and Spatially Resolved Flow in a Two-Stage Axial Compressor: Part 1—Experiment
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
113
, pp.
219
226
.
32.
Stauter, R. C., 1992, private communication.
33.
Van Doormaal
J. P.
, and
Raithby
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numerical Heat Transfer
, Vol.
7
, pp.
147
163
.
34.
Whitehead, D. S., 1960, “Force and Moment Coefficients for Vibrating Airfoil in Cascade,” British Aeronautical Council Reports and Memoranda No. 3254.
This content is only available via PDF.
You do not currently have access to this content.