Abstract

Under varying working conditions, friction between polymers and metals leads to surface wear of materials, accompanied by significant energy dissipation, part of which transforms into friction noise. Despite their high nonlinearity, friction noises share certain commonalities in their generation mechanisms. This study proposes a novel transfer mapping model, which, after modeling a specific pair, can predict the behavior of other pairs. We simplify the model through Pearson feature selection and employ decision tree-based algorithms (decision tree, extreme gradient boosting, categorical boosting) to model the transfer mapping. By comparing the performance of standard models with transfer models, we identify the optimal approach for constructing the transfer model by using the categorical boosting algorithm.

References

1.
Karnavas
,
Y. L.
, and
Vairis
,
A.
,
2011
, “
Modelling of Frictional Phenomena Using Neural Networks: Friction Coefficient Estimation
,”
Proceedings of the IASTED International Conference Applied Simulation and Modelling (ASM 2011)
,
Crete, Greece
,
June 22–24
, pp.
54
58
.
2.
Thankachan
,
T.
,
Soorya Prakash
,
K.
,
Kavimani
,
V.
, and
Silambarasan
,
S. R.
,
2021
, “
Machine Learning and Statistical Approach to Predict and Analyze Wear Rates in Copper Surface Composites
,”
Met. Mater. Int.
,
27
(
1
), pp.
220
234
.
3.
Sawyer
,
W. G.
, and
Wahl
,
K. J.
,
2008
, “
Accessing Inaccessible Interfaces: In Situ Approaches to Materials Tribology
,”
MRS Bull.
,
33
(
12
), pp.
1145
1150
.
4.
Dwivedi
,
D. K.
,
2010
, “
Adhesive Wear Behaviour of Cast Aluminium–Silicon Alloys: Overview
,”
Mater. Des.
,
31
(
5
), pp.
2517
2531
.
5.
Li
,
X.
,
Fu
,
P.
,
Chen
,
K.
,
Lin
,
Z.
, and
Zhang
,
E.
,
2016
, “
The Contact State Monitoring for [Q6]Seal End Faces Based on Acoustic Emission Detection
,”
Shock Vibr.
,
2016
(
1
), p.
8726781
.
6.
Zhang
,
Z.
, and
Li
,
X.
,
2014
, “
Acoustic Emission Monitoring for Film Thickness of Mechanical Seals Based on Feature Dimension Reduction and Cascaded Decision
,”
6th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA)
,
Zhangjiajie, China
,
Jan. 10–11
, pp.
64
70
.
7.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
8.
Vargas-Machuca
,
J.
,
García
,
F.
, and
Coronado
,
A. M.
,
2020
, “
Detailed Comparison of Methods for Classifying Bearing Failures Using Noisy Measurements
,”
J. Fail. Anal. Prev.
,
20
(
3
), pp.
744
754
.
9.
Basit
,
K.
,
Shams
,
H.
,
Khan
,
M. A.
, and
Mansoor
,
A.
,
2023
, “
Vibration Analysis Approach to Model Incremental Wear and Associated Sound in Multi-Contact Sliding Friction Mechanisms
,”
ASME J. Tribol.
,
145
(
9
), p.
091109
.
10.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G.
,
Jiang
,
Y.
, and
Wei
,
C.
,
2018
, “
Dynamic States Recognition of Friction Noise in the Wear Process Based on Moving Cut Data-Approximate Entropy
,”
ASME J. Tribol.
,
140
(
5
), p.
051604
.
11.
Nagarajan
,
R.
,
Subramanian
,
K.
,
Subramaniam
,
S. S.
,
Krishnasamy
,
S.
,
Siengchin
,
S.
,
Sukumaran
,
J.
,
Ismail
,
S. O.
,
Mohammad
,
F.
, and
Al-Lohedan
,
H. A.
,
2022
, “
A Novel Signal Processing Method for Friction and Sliding Wear
,”
ASME J. Tribol.
,
144
(
5
), p.
051702
.
12.
Tyurin
,
A. E.
,
Ismailov
,
G. M.
,
Beloenko
,
E. V.
, and
Baranov
,
A. V.
,
2016
, “
Monitoring Vibrations and Microdisplacement for ‘Pin on Disc’ Tribology Studies
,”
International Conference on Information Technologies in Business and Industry (ITBI)
,
Tomsk, Russia
,
Sept. 21–26
.
13.
Yan
,
R.
, and
Gao
,
R. X.
,
2005
, “
An Efficient Approach to Machine Health Diagnosis Based on Harmonic Wavelet Packet Transform
,”
Rob. Comput. Integr. Manuf.
,
21
(
4–5
), pp.
291
301
.
14.
He
,
Z.
,
Shi
,
T.
,
Xuan
,
J.
, and
Li
,
T.
,
2021
, “
Research on Tool Wear Prediction Based on Temperature Signals and Deep Learning
,”
Wear
,
478
, pp.
203902
.
15.
Li
,
Z.
,
Liu
,
R.
, and
Wu
,
D.
,
2019
, “
Data-Driven Smart Manufacturing: Tool Wear Monitoring With Audio Signals and Machine Learning
,”
J. Manuf. Processes
,
48
, pp.
66
76
.
16.
D'Addona
,
D. M.
,
Ullah
,
A. M. M. S.
, and
Matarazzo
,
D.
,
2017
, “
Tool-Wear Prediction and Pattern-Recognition Using Artificial Neural Network and DNA-Based Computing
,”
J. Intell. Manuf.
,
28
(
6
), pp.
1285
1301
.
17.
Lei
,
Z.
,
Zhou
,
Y. Q.
,
Sun
,
B. T.
, and
Sun
,
W. F.
,
2020
, “
An Intrinsic Timescale Decomposition-Based Kernel Extreme Learning Machine Method to Detect Tool Wear Conditions in the Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
106
(
3
), pp.
1203
1212
.
18.
Rafezi
,
H.
, and
Hassani
,
F.
,
2023
, “
Drill Bit Wear Monitoring and Failure Prediction for Mining Automation
,”
Int. J. Min. Sci. Technol.
,
33
(
3
), pp.
289
296
.
19.
Brito
,
L. C.
,
da Silva
,
M. B.
, and
Duarte
,
M. A. V.
,
2021
, “
Identification of Cutting Tool Wear Condition in Turning Using Self-Organizing Map Trained With Imbalanced Data
,”
J. Intell. Manuf.
,
32
(
1
), pp.
127
140
.
20.
Chen
,
S.
,
Cheng
,
G.
,
Guo
,
F.
,
Jia
,
X.
, and
Wen
,
X.
,
2025
, “
Integrating Friction Noise for In Situ Monitoring of Polymer Wear Performance: A Machine Learning Approach in Tribology
,”
ASME J. Tribol.
,
147
(
6
), p.
061701
.
21.
Zhao
,
H.
,
Yang
,
Z.
,
Zhang
,
B.
,
Xiang
,
C.
, and
Guo
,
F.
,
2024
, “
Machine Learning Algorithms for Predicting Wear Rates on the Basis of Friction Noise
,”
Tribol. Trans.
, 67(
4
), pp.
1
14
.
22.
Li
,
J.
,
Lu
,
J.
,
Chen
,
C.
,
Ma
,
J.
, and
Liao
,
X.
,
2021
, “
Tool Wear State Prediction Based on Feature-Based Transfer Learning
,”
Int. J. Adv. Manuf. Technol.
,
113
(
11–12
), pp.
3283
3301
.
23.
Zhang
,
P.
,
Gao
,
D.
,
Hong
,
D.
,
Lu
,
Y.
,
Wang
,
Z.
, and
Liao
,
Z.
,
2023
, “
Intelligent Tool Wear Monitoring Based on Multi-Channel Hybrid Information and Deep Transfer Learning
,”
J. Manuf. Syst.
,
69
, pp.
31
47
.
24.
Zhao
,
H.
,
Jiming
,
E.
,
Chen
,
S.
,
Cheng
,
G.
, and
Guo
,
F.
,
2024
, “
Prediction of Friction Coefficient of Polymer Surface Using Variational Mode Decomposition and Machine Learning Algorithm Based on Noise Features
,”
Tribol. Int.
,
191
, p.
109184
.
25.
Chen
,
S.
,
Guo
,
F.
,
Cheng
,
G.
,
Xiang
,
C.
, and
Wang
,
Y.
,
2023
, “
Evolution of the Low-Temperature Tribological Performance of Polychlorotrifluoroethylene and Polyimide
,”
Tribol. Int.
,
180
, p.
108271
.
26.
Sergienko
,
V.
,
Bukharov
,
S.
, and
Kupreev
,
A.
,
2007
, “
Tribological Processes on Contact Surfaces in Oil-Cooled Friction Pairs
,”
Proc NAS Belarus
,
51
(
6
), pp.
86
89
.
27.
Ostermeyer
,
G. P.
, and
Müller
,
M.
,
2005
, “
New Developments of Friction Models in Brake Systems
,”
SAE Trans.
,
144
(
6
), pp.
3078
3090
.
28.
Ostermeyer
,
G.
,
Müller
,
M.
,
Abendroth
,
H.
, and
Wernitz
,
B.
,
2006
,
Surface Topography and Wear Dynamics of Brake Pads 2006-01-3202
.
29.
Müller
,
M.
, and
Ostermeyer
,
G. P.
,
2007
, “
A Cellular Automaton Model to Describe the Three-Dimensional Friction and Wear Mechanism of Brake Systems
,”
Wear
,
263
(
7–12
), pp.
1175
1188
.
30.
Ringlein
,
J.
, and
Robbins
,
M. O.
,
2004
, “
Understanding and Illustrating the Atomic Origins of Friction
,”
Am. J. Phys.
,
72
(
7
), pp.
884
891
.
31.
Krim
,
J.
,
2002
, “
Surface Science and the Atomic-Scale Origins of Friction: What Once Was Old Is New Again
,”
Surf. Sci.
,
500
(
1–3
), pp.
741
758
.
32.
Bukharov
,
S.
,
2010
, “
Reduction of Vibroacoustic Activity of Metal-Polymer Tribojoints in Nonstationary Friction Processes
,”
Ph.D. thesis
,
MPRI NASB
,
Gomel
.
33.
Ostermeyer
,
G. P.
,
2009
, “On Tangential Friction Induced Vibrations in Brake Systems,”
Non-Smooth Problems in Vehicle Systems Dynamics
, P. Grove Thomsen and H. True, eds.,
Springer
,
Berlin, Heidelberg
, pp.
101
111
.
34.
Blekhman
,
I.
,
1971
,
Synchronization of Dynamic Systems
,
Nauka
,
Moscow
.
35.
Blekhman
,
I.
,
1981
,
Synchronization in Nature and Engineering
,
Izdatel’ Nauka
, Moscow
.
36.
Pikovskii
,
A.
,
Rozenblyum
,
M.
, and
Kurths
,
J.
,
2003
,
Synchronization: A Fundamental Nonlinear Phenomenon
,
Tekhnosfera
,
Moscow
.
37.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.
38.
Peng
,
Z. K.
, and
Chu
,
F. L.
,
2004
, “
Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review With Bibliography
,”
Mech. Syst. Signal Process
,
18
(
2
), pp.
199
221
.
39.
Cheng
,
G.
,
Chen
,
X.-H.
,
Shan
,
X.-L.
,
Liu
,
H.-G.
, and
Zhou
,
C.-F.
,
2016
, “
A New Method of Gear Fault Diagnosis in Strong Noise Based on Multi-Sensor Information Fusion
,”
J. Vib. Control
,
22
(
6
), pp.
1504
1515
.
40.
Bogoevska
,
S.
,
Spiridonakos
,
M.
,
Chatzi
,
E.
,
Dumova-Jovanoska
,
E.
, and
Höffer
,
R.
,
2017
, “
A Data-Driven Diagnostic Framework for Wind Turbine Structures: A Holistic Approach
,”
Sensors
,
17
(
4
), pp.
720
.
41.
Han
,
T.
,
Jiang
,
D.
,
Zhao
,
Q.
,
Wang
,
L.
, and
Yin
,
K.
,
2018
, “
Comparison of Random Forest, Artificial Neural Networks and Support Vector Machine for Intelligent Diagnosis of Rotating Machinery
,”
Trans. Inst. Meas. Control
,
40
(
8
), pp.
2681
2693
.
42.
Goyal
,
D.
,
Vanraj Pabla
,
B. S.
, and
Dhami
,
S. S.
,
2017
, “
Condition Monitoring Parameters for Fault Diagnosis of Fixed Axis Gearbox: A Review
,”
Arch. Comput. Meth. Eng.
,
24
(
3
), pp.
543
556
.
43.
Bravi
,
A.
,
Longtin
,
A.
, and
Seely
,
A. J.
,
2011
, “
Review and Classification of Variability Analysis Techniques With Clinical Applications
,”
Biomed. Eng. Online
,
10
(
1
), pp.
1
27
.
44.
Kang
,
S.
,
Ma
,
D.
,
Wang
,
Y.
,
Lan
,
C.
,
Chen
,
Q.
, and
Mikulovich
,
V.
,
2017
, “
Method of Assessing the State of a Rolling Bearing Based on the Relative Compensation Distance of Multiple-Domain Features and Locally Linear Embedding
,”
Mech. Syst. Signal Process
,
86
, pp.
40
57
.
45.
Cheng
,
G.
,
Xiang
,
C.
,
Guo
,
F.
,
Wen
,
X.
, and
Jia
,
X.
,
2023
, “
Prediction of the Tribological Properties of a Polymer Surface in a Wide Temperature Range Using a Machine Learning Algorithm Based on Friction Noise
,”
Tribol. Int.
,
180
, pp.
108213
.
46.
Chen
,
H.
,
Zhang
,
H.
,
Si
,
S.
,
Li
,
Y.
,
Boning
,
D.
, and
Hsieh
,
C. J.
,
2019
, “
Robustness Verification of Tree-Based Models
,”
Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
,
Dec. 8–14
.
47.
Singmann
,
H.
,
Heck
,
D. W.
,
Barth
,
M.
,
Erdfelder
,
E.
,
Arnold
,
N. R.
,
Aust
,
F.
,
Calanchini
,
J.
, et al
,
2024
, “
Evaluating the Robustness of Parameter Estimates in Cognitive Models: A Meta-Analytic Review of Multinomial Processing Tree Models Across the Multiverse of Estimation Methods
,”
Psychol. Bull.
,
150
(
8
), pp.
965
1003
.
48.
Pearson
,
K.
,
1895
, “
Contributions to the Mathematical Theory of Evolution. On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs
,”
Proc. R. Soc.
,
60
, pp.
489
498
.
49.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
(
Mar.
), pp.
1157
1182
.
50.
Chandrashekar
,
G.
, and
Sahin
,
F.
,
2014
, “
A Survey on Feature Selection Methods
,”
Comput. Electr. Eng.
,
40
(
1
), pp.
16
28
.
51.
Liu
,
Y.
,
Mu
,
Y.
,
Chen
,
K.
,
Li
,
Y.
, and
Guo
,
J.
,
2020
, “
Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient
,”
Neural Process. Lett.
,
51
(
2
), pp.
1771
1787
.
52.
Hunt
,
E.
,
1966
, “
Utilization of Memory in Concept Learning Systems
,”
Concepts and the Structure of Memory
,
4
, pp.
42
48
.
53.
Yildiz
,
C. T.
, and
Alpaydin
,
E.
,
2001
, “
Omnivariate Decision Trees
,”
IEEE Trans. Neural Networks
,
12
(
6
), pp.
1539
1546
.
54.
Sebbanü
,
M.
,
NockO
,
R.
,
Chauchat
,
J.
, and
Rakotomalala
,
R.
,
2000
, “
Impact of Learning Set Quality and Size on Decision Tree Performances
,”
IJCSS
,
1
(
1
).
55.
Oates
,
T.
, and
Jensen
,
D.
,
1997
, “
The Effects of Training Set Size on Decision Tree Complexity
,”
Sixth International Workshop on Artificial Intelligence and Statistics
,
Fort Lauderdale, FL
,
Jan. 4–7
.
56.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
48
(
2
), pp.
214
219
.
57.
Quinlan
,
J. R.
,
1993
, “
C4.5: Programs for Machine Learning
,”
Mach. Learn.
,
16
(
3
), pp.
235
240
.
58.
Breiman
,
L.
,
Friedman
,
J. H.
, and
Olshen
,
R. A.
,
1984
, “
Classification and Regression Trees (CART)
,”
Biometrics
,
40
(
3
), pp.
358
360
.
59.
Krzywinski
,
M.
, and
Altman
,
N.
,
2017
, “
Classification and Regression Trees
,”
Nat. Methods
,
14
(
8
), pp.
757
758
.
60.
Klusowski
,
J. M.
, and
Tian
,
P. M.
,
2024
, “
Large Scale Prediction With Decision Trees
,”
J. Am. Stat. Assoc.
,
119
(
545
), pp.
525
537
.
61.
Sibindi
,
R.
,
Mwangi
,
R. W.
, and
Waititu
,
A. G.
,
2023
, “
A Boosting Ensemble Learning Based Hybrid Light Gradient Boosting Machine and Extreme Gradient Boosting Model for Predicting House Prices
,”
Eng. Rep.
,
5
(
4
), pp.
e12599
.
62.
Costa
,
V. G.
, and
Pedreira
,
C. E.
,
2023
, “
Recent Advances in Decision Trees: An Updated Survey
,”
Artif. Intell. Rev.
,
56
(
5
), pp.
4765
4800
.
63.
Nasiboglu
,
R.
, and
Nasibov
,
E.
,
2023
, “
WABL Method as a Universal Defuzzifier in the Fuzzy Gradient Boosting Regression Model
,”
Expert Syst. Appl.
,
212
, pp.
118771
.
64.
Benemaran
,
R. S.
,
2023
, “
Application of Extreme Gradient Boosting Method for Evaluating the Properties of Episodic Failure of Borehole Breakout
,”
Geoenergy Sci. Eng.
,
226
, pp.
211837
.
65.
Zhao
,
D.
,
Li
,
H.
,
Lu
,
Y.
,
Sun
,
D.
,
Zhu
,
D.
, and
Gao
,
Q.
,
2023
, “
Multi-Label Weak-Label Learning via Semantic Reconstruction and Label Correlations
,”
Inf. Sci.
,
623
, pp.
379
401
.
66.
Huang
,
H. H.
, and
He
,
Q.
,
2024
, “
Nonlinear Regression Analysis
,” arXiv preprint arXiv:2402.05342.
67.
Munshi
,
T. A.
,
Jahan
,
L. N.
,
Howladar
,
M. F.
, and
Hashan
,
M.
,
2024
, “
Prediction of Gross Calorific Value From Coal Analysis Using Decision Tree-Based Bagging and Boosting Techniques
,”
Heliyon
,
10
(
1
), p.
e23395
.
68.
Gunasekara
,
N.
,
Pfahringer
,
B.
,
Gomes
,
H.
, and
Bifet
,
A.
,
2024
, “
Gradient Boosted Trees for Evolving Data Streams
,”
Mach. Learn.
,
113
(
5
), pp.
3325
3352
.
69.
Yiu
,
B. W. K.
,
Zhang
,
T.
, and
Lee
,
C. W.
,
2024
, “
Short-Term Load Forecasting Using Regularized Greedy Forest-Based Ensemble Model
,”
IEEE Access
,
12
, pp.
112426
112439
.
70.
Wijayanti
,
E. B.
,
Setiadi
,
D. R. I. M.
, and
Setyoko
,
B. H.
,
2024
, “
Dataset Analysis and Feature Characteristics to Predict Rice Production Based on EXtreme Gradient Boosting
,”
J. Comput. Theor. Appl.
,
1
(
3
), pp.
299
310
.
71.
Geeitha
,
S.
,
Ravishankar
,
K.
,
Cho
,
J.
, and
Easwaramoorthy
,
S. V.
,
2024
, “
Integrating Cat Boost Algorithm With Triangulating Feature Importance to Predict Survival Outcome in Recurrent Cervical Cancer
,”
Sci. Rep.
,
14
(
1
), p.
19828
.
You do not currently have access to this content.