Abstract

This study examines the effects of mechanical behavior, thermal characteristics, and tribological variables (sliding frequency, normal load, and temperature) on the tribological performance of carbon nanotube (CNT)-coated aramid fabric-reinforced epoxy composites using a computational and data-driven machine learning (ML) approach. Predictive models for the coefficient of friction (COF) were developed based on previous tribological, mechanical, and thermal data, employing three ML algorithms: artificial neural network (ANN), gradient boosting machine (GBM), and random forest (RF). The models showed the following results—ANN: R2 = 0.9088, GBM: R2 = 0.92807, and RF: R2 = 0.85294, with the GBM model providing the best predictions. The dataset with the best performance had an error percentage of 0.003658%, while the poorest performance showed 13.56625%. Feature score analysis highlighted load, sliding frequency, and CNT content as key factors influencing COF. This data-driven ML analysis offers significant insights into the tribological behavior of fiber-reinforced polymer composites, aiding in material design and performance optimization.

References

1.
Kumar
,
S.
,
Singh
,
K. K.
, and
Ramkumar
,
J.
,
2021
, “
The Effects of Graphene Nanoplatelets on the Tribological Performance of Glass Fiber-Reinforced Epoxy Composites
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
8
), pp.
1514
1525
.
2.
Yadav
,
R.
,
Singh
,
M.
,
Shekhawat
,
D.
,
Lee
,
S. Y.
, and
Park
,
S. J.
,
2023
, “
The Role of Fillers to Enhance the Mechanical, Thermal, and Wear Characteristics of Polymer Composite Materials: A Review
,”
Composites Part A
,
175
, p.
107775
.
3.
Singh
,
M.
,
Dodla
,
S.
,
Gautam
,
R. K.
, and
Srivastava
,
V. K.
,
2023
, “
Effect of Load, Sliding Frequency, and Temperature on Tribological Properties of Graphene Nanoplatelets Coated Carbon Fiber Reinforced Polymer Composites
,”
J. Compos. Mater.
,
57
(
1
), pp.
121
132
.
4.
Kumar
,
S.
, and
Singh
,
K. K.
,
2020
, “
Tribological Behaviour of Fibre-Reinforced Thermoset Polymer Composites: A Review
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
234
(
11
), pp.
1439
1449
.
5.
Findik
,
F.
,
2014
, “
Latest Progress on Tribological Properties of Industrial Materials
,”
Mater. Des.
,
57
, pp.
218
244
.
6.
Shalwan
,
A.
, and
Yousif
,
B. F.
,
2014
, “
Influence of Date Palm Fibre and Graphite Filler on Mechanical and Wear Characteristics of Epoxy Composites
,”
Mater. Des.
,
59
, pp.
264
273
.
7.
Bijwe
,
J.
,
Rattan
,
R.
, and
Fahim
,
M.
,
2007
, “
Abrasive Wear Performance of Carbon Fabric Reinforced Polyetherimide Composites: Influence of Content and Orientation of Fabric
,”
Tribol. Int.
,
40
(
5
), pp.
844
854
.
8.
Xiong
,
X.
,
Shen
,
S. Z.
,
Alam
,
N.
,
Hua
,
L.
,
Li
,
X.
,
Wan
,
X.
, and
Miao
,
M.
,
2018
, “
Mechanical and Abrasive Wear Performance of Woven Flax Fabric/Polyoxymethylene Composites
,”
Wear
,
414
, pp.
9
20
.
9.
Chairman
,
C. A.
, and
Kumaresh Babu
,
S. P.
,
2013
, “
Mechanical and Abrasive Wear Behavior of Glass and Basalt Fabric-Reinforced Epoxy Composites
,”
J. Appl. Polym. Sci.
,
130
(
1
), pp.
120
130
.
10.
Suresha
,
B.
,
Ramesh
,
B. N.
,
Subbaya
,
K. M.
,
Kumar
,
B. R.
, and
Chandramohan
,
G.
,
2010
, “
Influence of Graphite Filler on Two-Body Abrasive Wear Behaviour of Carbon Fabric Reinforced Epoxy Composites
,”
Mater. Des.
,
31
(
4
), pp.
1833
1841
.
11.
Holmberg
,
K.
,
Kivikytö-Reponen
,
P.
,
Härkisaari
,
P.
,
Valtonen
,
K.
, and
Erdemir
,
A.
,
2017
, “
Global Energy Consumption Due to Friction and Wear in the Mining Industry
,”
Tribol. Int.
,
115
, pp.
116
139
.
12.
Kumar
,
S.
, and
Singh
,
K. K.
,
2019
, “Tribological Performances of Woven Carbon Fabric/Epoxy Composites Under Dry and Oil Lubrication Condition: An Experimental Investigation,”
Trends in Materials Engineering: Select Proceedings of ICFTMM 2018
,
I.
Singh
,
B.
Pramendra Kumar
and
P.
Kuldeep
, eds.,
Springer, Singapore
,
Singapore
, pp.
43
50
.
13.
Holmberg
,
K.
,
Andersson
,
P.
,
Nylund
,
N. O.
,
Mäkelä
,
K.
, and
Erdemir
,
A.
,
2014
, “
Global Energy Consumption Due to Friction in Trucks and Buses
,”
Tribol. Int.
,
78
, pp.
94
114
.
14.
Yang
,
X.
,
Boroomandpour
,
A.
,
Wen
,
S.
,
Toghraie
,
D.
, and
Soltani
,
F.
,
2021
, “
Applying Artificial Neural Networks (ANNs) for Prediction of the Thermal Characteristics of Water/Ethylene Glycol-Based Mono, Binary and Ternary Nanofluids Containing MWCNTs, Titania, and Zinc Oxide
,”
Powder Technol.
,
388
, pp.
418
424
.
15.
Hasan
,
M. S.
,
Wong
,
T.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Analysis of the Friction and Wear of Graphene Reinforced Aluminum Metal Matrix Composites Using Machine Learning Models
,”
Tribol. Int.
,
170
, p.
107527
.
16.
Mohammed
,
A. S.
,
Dodla
,
S.
,
Katiyar
,
J. K.
, and
Samad
,
M. A.
,
2023
, “
Prediction of Friction Coefficient of su-8 and Its Composite Coatings Using Machine Learning Techniques
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
237
(
4
), pp.
943
953
.
17.
Schmidt
,
J.
,
Marques
,
M. R.
,
Botti
,
S.
, and
Marques
,
M. A.
,
2019
, “
Recent Advances and Applications of Machine Learning in Solid-State Materials Science
,”
npj Comput. Mater.
,
5
(
1
), p.
83
.
18.
Yu
,
T.
,
Li
,
Z.
, and
Wu
,
D.
,
2019
, “
Predictive Modeling of Material Removal Rate in Chemical Mechanical Planarization With Physics-Informed Machine Learning
,”
Wear
,
426
, pp.
1430
1438
.
19.
Graser
,
J.
,
Kauwe
,
S. K.
, and
Sparks
,
T. D.
,
2018
, “
Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons
,”
Chem. Mater.
,
30
(
11
), pp.
3601
3612
.
20.
Sarker
,
I. H.
,
2021
, “
Machine Learning: Algorithms, Real-World Applications and Research Directions
,”
SN Comput. Sci.
,
2
(
3
), p.
160
.
21.
Borjali
,
A.
,
Monson
,
K.
, and
Raeymaekers
,
B.
,
2019
, “
Predicting the Polyethylene Wear Rate in Pin-on-Disc Experiments in the Context of Prosthetic Hip Implants: Deriving a Data-Driven Model Using Machine Learning Methods
,”
Tribol. Int.
,
133
, pp.
101
110
.
22.
Kong
,
Z.
,
Beyca
,
O.
,
Bukkapatnam
,
S. T.
, and
Komanduri
,
R.
,
2011
, “
Nonlinear Sequential Bayesian Analysis-Based Decision Making for End-Point Detection of Chemical Mechanical Planarization (CMP) Processes
,”
IEEE Trans. Semicond. Manuf.
,
24
(
4
), pp.
523
532
.
23.
Chicco
,
D.
,
Warrens
,
M. J.
, and
Jurman
,
G.
,
2021
, “
The Coefficient of Determination R-Squared is More Informative Than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation
,”
Peerj Comput. Sci.
,
7
, p.
e623
.
24.
Sharma
,
M.
,
Bijwe
,
J.
, and
Mitschang
,
P.
,
2011
, “
Abrasive Wear Studies on Composites of PEEK and PES With Modified Surface of Carbon Fabric
,”
Tribol. Int.
,
44
(
2
), pp.
81
91
.
25.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
26.
Singh
,
M.
,
Dodla
,
S.
, and
Gautam
,
R. K.
,
2024
, “
Mechanical and Tribological Properties of CNTs Coated Aramid Fiber-Reinforced Epoxy Composites
,”
Composites Part A
,
179
, p.
108061
.
27.
Kumar
,
S.
,
Singh
,
K. S. K.
, and
Singh
,
K. K.
,
2022
, “
Data-Driven Modeling for Predicting Tribo-Performance of Graphene-Incorporated Glass-Fabric Reinforced Epoxy Composites Using Machine Learning Algorithms
,”
Polym. Compos.
,
43
(
9
), pp.
6599
6610
.
28.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
29.
Marian
,
M.
, and
Tremmel
,
S.
,
2021
, “
Current Trends and Applications of Machine Learning in Tribology—A Review
,”
Lubricants
,
9
(
9
), p.
86
.
30.
Vautard
,
F.
,
Fioux
,
P.
,
Vidal
,
L.
,
Siffer
,
F.
,
Roucoules
,
V.
,
Schultz
,
J.
,
Nardin
,
M.
, and
Defoort
,
B.
,
2014
, “
Use of Plasma Polymerization to Improve Adhesion Strength in Carbon Fiber Composites Cured by Electron Beam
,”
ACS Appl. Mater. Interfaces
,
6
(
3
), pp.
1662
1674
.
31.
Tsukizoe
,
T.
, and
Ohmae
,
N.
,
1983
, “
Friction and Wear of Advanced Composite Materials
,”
Fibre Sci. Technol.
,
18
(
4
), pp.
265
286
.
32.
Lhymn
,
C.
,
Tempelmeyer
,
K. E.
, and
Davis
,
P. K.
,
1985
, “
The Abrasive Wear of Short Fibre Composites
,”
Composites
,
16
(
2
), pp.
127
136
.
33.
Lancaster
,
J. K.
,
1969
, “
Abrasive Wear of Polymers
,”
Wear
,
14
(
4
), pp.
223
239
.
34.
Bijwe
,
J.
,
Indumathi
,
J.
, and
Ghosh
,
A. K.
,
2002
, “
On the Abrasive Wear Behaviour of Fabric-Reinforced Polyetherimide Composites
,”
Wear
,
253
(
7–8
), pp.
768
777
.
35.
Nguyen
,
N. Y.
,
Zhong
,
Z. W.
, and
Tian
,
Y.
,
2015
, “
An Analytical Investigation of Pad Wear Caused by the Conditioner in Fixed Abrasive Chemical–Mechanical Polishing
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
897
905
.
36.
Behera
,
S.
,
Gautam
,
R. K.
,
Mohan
,
S.
, and
Chattopadhyay
,
A.
,
2021
, “
Hemp Fiber Surface Modification: Its Effect on Mechanical and Tribological Properties of Hemp Fiber Reinforced Epoxy Composites
,”
Polym. Compos.
,
42
(
10
), pp.
5223
5236
.
37.
Ujah
,
C. O.
,
Kallon
,
D. V. V.
, and
Aigbodion
,
V. S.
,
2023
, “
Tribological Properties of CNTs-Reinforced Nano Composite Materials
,”
Lubricants
,
11
(
3
), p.
95
.
38.
Wang
,
B.
,
Fu
,
Q.
,
Li
,
H.
,
Qi
,
L.
, and
Lu
,
Y.
,
2020
, “
Synergistic Effect of Surface Modification of Carbon Fabrics and Multiwall Carbon Nanotube Incorporation for Improving Tribological Properties of Carbon Fabrics/Resin Composites
,”
Polym. Compos.
,
41
(
1
), pp.
102
111
.
39.
Mikhin
,
N. M.
, and
Lyapin
,
K. S.
,
1970
, “
Hardness Dependence of the Coefficient of Friction
,”
Soviet Phys. J.
,
13
(
3
), pp.
317
321
.
40.
Unal
,
H.
,
Mimaroglu
,
A.
,
Kadıoglu
,
U.
, and
Ekiz
,
H.
,
2004
, “
Sliding Friction and Wear Behaviour of Polytetrafluoroethylene and Its Composites Under Dry Conditions
,”
Mater. Des.
,
25
(
3
), pp.
239
245
.
41.
Bijwe
,
J.
,
Logani
,
C. M.
, and
Tewari
,
U. S.
,
1990
, “
Influence of Fillers and Fibre Reinforcement on Abrasive Wear Resistance of Some Polymeric Composites
,”
Wear
,
138
(
1–2
), pp.
77
92
.
42.
Tewari
,
U. S.
,
Bijwe
,
J.
,
Mathur
,
J. N.
, and
Sharma
,
I.
,
1992
, “
Studies on Abrasive Wear of Carbon Fibre (Short) Reinforced Polyamide Composites
,”
Tribol. Int.
,
25
(
1
), pp.
53
60
.
43.
Bijwe
,
J.
, and
Rattan
,
R.
,
2007
, “
Influence of Weave of Carbon Fabric in Polyetherimide Composites in Various Wear Situations
,”
Wear
,
263
(
7–12
), pp.
984
991
.
You do not currently have access to this content.