Graphical Abstract Figure

Schematic of grease structure evolution during manufacturing and rheological analysis

Graphical Abstract Figure

Schematic of grease structure evolution during manufacturing and rheological analysis

Close modal

Abstract

The effect of base oil viscosity and temperature on the thixotropic recovery of lubricating grease (LG) is investigated via shear rheology. The viscosity of the base lubricant phase of LGs impacts the storage modulus in both the undisturbed and post-sheared states. In this study, we focus on three greases with varied base oil viscosity but similar chemistry: polyalphaolefin (PAO) 8, PAO 40, and PAO 100. Small amplitude oscillatory shear testing is first used to evaluate the viscoelastic modulus in the undisturbed state at varied temperatures. A one-hour full rotation shear is then applied to mechanically disrupt the LGs. The storage modulus is then tracked over time under varied temperatures to investigate thixotropic recovery. These results show that the physical properties of the fluid phase of LGs can significantly impact the mechanical properties of the solid phase present in LGs and that the storage moduli is a function of the state related to temperature.

References

1.
Shah
,
R.
, and
Tuszynski
,
W.
,
2022
,
NLGI Lubricating Grease Guide
,
NLGI International Headquarters
,
Liberty, MO
.
2.
Nguyen
,
G. T.
,
Hwang
,
H. S.
,
Lee
,
J.
,
Cha
,
D. A.
, and
Park
,
I.
,
2021
, “
n-Octadecane/Fumed Silica Phase Change Composite as Building Envelope for High Energy Efficiency
,”
Nanomaterials
,
11
(
3
), p.
566
.
3.
Bosman
,
R.
, and
Lugt
,
P. M.
,
2018
, “
The Microstructure of Calcium Sulfonate Complex Lubricating Grease and Its Change in the Presence of Water
,”
Tribol. Trans.
,
61
(
5
), pp.
842
849
.
4.
Roman
,
C.
,
Valencia
,
C.
, and
Franco
,
J. M.
,
2016
, “
AFM and SEM Assessment of Lubricating Grease Microstructures: Influence of Sample Preparation Protocol, Frictional Working Conditions and Composition
,”
Tribol. Lett.
,
63
, p.
20
.
5.
Yoshihara
,
M. M. K.
,
2017
, “
Observation of Thickener Structure in Grease
,”
NLGI Spokesman
,
81
(
1
), pp.
28
33
.
6.
Huffman
,
L.
,
Cuthbert
,
J.
,
Capaldo
,
K.
,
Hook
,
B.
,
Rozowski
,
P.
,
Thorseth
,
M.
, and
Kunz
,
K.
,
2022
, “
A Preformed Urea Thickener for Grease
,”
STLE
,
Nashville, TN
,
September 2022
.
7.
Couronné
,
I.
,
Vergne
,
P.
,
Mazuyer
,
D.
,
Truong-Dinh
,
N.
, and
Girodin
,
D.
,
2003
, “
Effects of Grease Composition and Structure on Film Thickness in Rolling Contact
,”
Tribol. Trans.
,
46
(
1
), pp.
31
36
.
8.
Mortier
,
R. M.
,
Orszulik
,
S. T.
, and
Fox
,
M. F.
,
2010
,
Chemistry and Technology of Lubricants
, 3rd ed.,
Springer
,
Cham, Switzerland
.
9.
Ruiz-Viera
,
M. J.
,
Delgado
,
M. A.
,
Franco
,
J. M.
, and
Gallegos
,
C.
,
2006
, “
Evaluation of Wall Slip Effects in the Lubricating Grease/Air Two-Phase Flow Along Pipelines
,”
J. Non-Newton. Fluid
,
139
(
3
), pp.
190
196
.
10.
Sacchettini
,
M.
,
Magnin
,
A.
,
Piau
,
J. M.
, and
Pierrard
,
J. M.
,
1985
, “
Characterization of Lubricating Grease in Transient Viscometric Flows
,”
J. Mec. Theor. Appl.
, pp.
165
199
.
11.
Yeong
,
S. K.
,
Luckham
,
P. F.
, and
Tadros
,
T. F.
,
2004
, “
Steady Flow and Viscoelastic Properties of Lubricating Grease Containing Various Thickener Concentrations
,”
J. Colloid Interface Sci.
,
274
(
1
), pp.
285
293
.
12.
ASTM
,
2021
,
Standard Test Methods for Cone Penetration of Lubricating Grease
,
ASTM International
,
West Conshohoken, PA
.
13.
ASTM
,
2018
,
Standard Test Method for Roll Stability of Lubricating Grease
,
ASTM International
,
West Conoshohoken, PA
.
14.
Cyriac
,
F.
,
Lugt
,
P. M.
, and
Bosman
,
R.
,
2016
, “
On a New Method to Determine the Yield Stress in Lubricating Grease
,”
Tribol. Lubr. Technol.
,
72
(
3
), p.
60
.
15.
Flemming
,
W. S.
, and
Sander
,
J. R.
,
2001
, “
A Rheological Study: Do all #2 Greases Act the Same?
,”
NLGI Spokesman
,
76
(
1
), pp.
18
29
.
16.
Whittingstall
,
P.
,
1996
, “
Controlled Stress Rheometry as a Tool to Measure Grease Structure and Yield at Various Temperatures
,”
NLGI Spokesman
,
61
, pp.
12
23
.
17.
Zhou
,
Y. X.
,
Bosman
,
R.
, and
Lugt
,
P. M.
,
2018
, “
A Model for Shear Degradation of Lithium Soap Grease at Ambient Temperature
,”
Tribol. Trans.
,
61
(
1
), pp.
61
70
.
18.
Zhou
,
Y. X.
,
Bosman
,
R.
, and
Lugt
,
P. M.
,
2019
, “
A Master Curve for the Shear Degradation of Lubricating Greases With a Fibrous Structure
,”
Tribol. Trans.
,
62
(
1
), pp.
78
87
.
19.
Couronne
,
I.
,
Blettner
,
G.
, and
Vergne
,
P.
,
2000
, “
Rheological Behavior of Greases: Part I—Effects of Composition and Structure
,”
Tribol. Trans.
,
43
(
4
), pp.
619
626
.
20.
Rezasoltani
,
A.
, and
Khonsari
,
M. M.
,
2017
, “
Mechanical Degradation of Lubricating Grease in an EHL Line Contact
,”
Tribol. Int.
,
109
, pp.
541
551
.
21.
Couronne
,
I.
, and
Vergne
,
P.
,
2000
, “
Rheological Behavior of Greases: Part II—Effect of Thermal Aging, Correlation With Physico-Chemical Changes
,”
Tribol. Trans.
,
43
(
4
), pp.
788
794
.
22.
Martin-Alfonso
,
J. E.
,
Valencia
,
C.
,
Sanchez
,
M. C.
,
Franco
,
J. M.
, and
Gallegos
,
C.
,
2013
, “
The Effect of Recycled Polymer Addition on the Thermorheological Behavior of Modified Lubricating Greases
,”
Polym. Eng. Sci.
,
53
(
4
), pp.
818
826
.
23.
Rezasoltani
,
A.
, and
Khonsari
,
M. M.
,
2016
, “
An Engineering Model to Estimate Consistency Reduction of Lubricating Grease Subjected to Mechanical Degradation Under Shear
,”
Tribol. Int.
,
103
, pp.
465
474
.
24.
Lundberg
,
J.
, and
Höglund
,
E.
,
2000
, “
A New Method for Determining the Mechanical Stability of Lubricating Greases
,”
Tribol. Int.
,
33
(
3–4
), pp.
217
223
.
25.
Osara
,
J. A.
, and
Bryant
,
M. D.
,
2019
, “
Thermodynamics of Grease Degradation
,”
Tribol. Int.
,
137
, pp.
433
445
.
26.
Rezasoltani
,
A.
, and
Khonsari
,
M. M.
,
2014
, “
On the Correlation Between Mechanical Degradation of Lubricating Grease and Entropy
,”
Tribol. Lett.
,
56
, pp.
197
204
.
27.
Sánchez
,
M. C.
,
Franco
,
J. M.
,
Valencia
,
C.
,
Gallegos
,
C.
,
Urquiola
,
F.
, and
Urchegui
,
R.
,
2011
, “
Atomic Force Microscopy and Thermo-Rheological Characterisation of Lubricating Greases
,”
Tribol. Lett.
,
41
(
2
), pp.
463
470
.
28.
Mewis
,
J.
, and
Wagner
,
N. J.
,
2009
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
,
147–148
, pp.
214
227
.
29.
Delgado
,
M. A.
,
Valencia
,
C.
,
Sánchez
,
M. C.
,
Franco
,
J. M.
, and
Gallegos
,
C.
,
2006
, “
Thermorheological Behaviour of a Lithium Lubricating Grease
,”
Tribol. Lett.
,
23
(
1
), pp.
47
54
.
30.
Paszkowski
,
M.
, and
Olsztyńska-Janus
,
S.
,
2014
, “
Grease Thixotropy: Evaluation of Grease Microstructure Change Due to Shear and Relaxation
,”
Ind. Lubr. Tribol.
,
66
(
2
), pp.
223
237
.
31.
Paszkowski
,
M.
,
2013
, “
Assessment of the Effect of Temperature, Shear Rate and Thickener Content on the Thixotropy of Lithium Lubricating Greases
,”
Proc. Inst. Mech. Eng., Part J
,
227
(
J3
), pp.
209
219
.
32.
Czarny
,
R. P.
, and
Paszkowski
,
M.
,
2006
,
Influence of Solid Additives on Rheological Properties of Lubricating Greases
,
International Colloquium Tribology Stuttgar
,
Ostfildern, Germany
.
33.
Czarny
,
R. P.
, and
Paszkowski
,
M.
,
2007
, “
Influence of Graphite Solid Additives, MoS2 and PTFE on Changes in Shear Stress Values in Lubricating Grease
,”
J. Synth. Lubr.
,
24
(
1
), pp.
19
29
.
34.
Paszkowski
,
M.
,
Olsztyńska-Janus
,
S.
, and
Wilk
,
I.
,
2014
, “
Studies of the Kinetics of Lithium Grease Microstructure Regeneration by Means of Dynamic Oscillatory Rheological Tests and FTIR-ATR Spectroscopy
,”
Tribol. Lett.
,
56
(
1
), pp.
107
117
.
35.
Bonta
,
J.
, and
Pham
,
J.T.
,
2023
, “
Thixotropic Recover of Lubricating Greases of Varied Thickener Types
,”
NLGI Spokesman
,
87
(
2
), pp.
22
31
.
36.
Bonta
,
J.
, and
Pham
,
J.T.
,
2025
,
Characterizing Lubricating Grease Thixotropy at Different Recovery Strains
,
NLGI Spokesman
.
37.
Osara
,
J. A.
,
Chatra
,
S.
, and
Lugt
,
P. M.
,
2024
, “
Grease Material Properties From First Principles Thermodynamics
,”
Lubr. Sci.
,
36
(
1
), pp.
36
50
.
You do not currently have access to this content.