Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The journal bearing is pivotal for the advancement of refrigerant compressors. While the gas–oil lubrication mechanism has been explored in some previous studies, the dynamic coefficients of gas–oil-lubricated bearings in pressurized refrigerant environments remain understudied. This article introduces a comprehensive analysis that extends the solubility-based compressible Reynolds equation (CRE) to derive the perturbed pressure in response to journal displacement and velocity. The approach generalizes the partial differential CRE (PDCRE) to calculate the dynamic coefficients, offering new insights into the dynamic coefficients of gas–oil-lubricated journal bearings under high-pressure conditions. The results delineate a notable elevation in the attitude angles under a pressurized refrigerant environment. It is also observed that the direct stiffness and coupled damping coefficients of two-phase bearings, especially under light-load scenarios, are significantly higher than the results from low-ambient pressure scenarios. Besides, higher rotational speeds increase the Sommerfeld number and attitude angle, yet concurrently reduce the stiffness and damping coefficients. The numerical results indicate that the characteristics of the investigated gas–oil-lubricated journal bearing are significantly different from those in atmospheric conditions, which should be meticulously considered in the bearing design and simulation of a high-pressure compressor.

References

1.
Zhang
,
L.
,
Jiang
,
Y.
,
Dong
,
J.
, and
Yao
,
Y.
,
2018
, “
Advances in Vapor Compression Air Source Heat Pump System in Cold Regions: A Review
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
353
365
.
2.
Asif
,
A.
, and
Polycarpou
,
A. A.
,
2024
, “
Tribological Performance of Lubricating Oils With Iron Tribopairs Under Elevated Temperature and Pressure in Carbon Dioxide Refrigerant
,”
Tribol. Int.
,
193
, p.
109391
.
3.
Fouad
,
W. A.
, and
Vega
,
L. F.
,
2019
, “
Molecular Modeling of the Solubility of Low Global Warming Potential Refrigerants in Polyol Ester Lubricants
,”
Int. J. Refrig.
,
103
, pp.
145
154
.
4.
Fukuta
,
M.
,
Yanagisawa
,
T.
, and
Somchai
,
N.
,
1998
, “
Pressure Characteristics of Oil-Refrigerant Mixture in Clearance Between Oscillating Plates
,”
International Compressor Engineering Conference
,
West Lafayette, IN
,
July 14
, p.
1230
.
5.
Hao
,
Z. R.
, and
Gu
,
C. W.
,
2014
, “
Numerical Modeling for Gaseous Cavitation of Oil Film and Non-Equilibrium Dissolution Effects in Thrust Bearings
,”
Tribol. Int.
,
78
, pp.
14
26
.
6.
Li
,
X.
,
Song
,
Y.
,
Hao
,
Z.
, and
Gu
,
C.
,
2012
, “
Cavitation Mechanism of Oil-Film Bearing and Development of a New Gaseous Cavitation Model Based on Air Solubility
,”
ASME J. Tribol.
,
134
(
3
), p.
031701
.
7.
Gu
,
Y.
,
Ren
,
G.
, and
Zhou
,
M.
,
2020
, “
A Fully Coupled Elastohydrodynamic Model for Static Performance Analysis of Gas Foil Bearings
,”
Tribol. Int.
,
147
, p.
106297
.
8.
Prata
,
A. T.
,
Grando
,
F.
,
Silva
,
A.
, and
Barbosa
,
J.
,
2004
, “
Improving Compressor Design Through Modeling of Phase Change and Two-Phase Flow Phenomena
,”
International Compressor Engineering Conference
,
West Lafayette, IN
,
July 12
, p.
1688
.
9.
Grando
,
F. P.
,
Priest
,
M.
, and
Prata
,
A. T.
,
2006
, “
A Two-Phase Flow Approach to Cavitation Modelling in Journal Bearings
,”
Tribol. Lett.
,
21
(
3
), pp.
233
244
.
10.
Wang
,
C.
,
Zhong
,
H.
,
Lei
,
B.
, and
Wu
,
J.
,
2024
, “
Two-Phase Lubrication Characteristics of Journal Bearing in Refrigerant-Oil System Under High-Pressure Environment Considering Gaseous Cavitation
,”
Int. J. Refrig.
,
158
, pp.
253
263
.
11.
Hiwata
,
A.
,
Sawai
,
K.
,
Sakuda
,
A.
,
Morimoto
,
T.
,
Fukuta
,
M.
, and
Yanagisawa
,
T.
,
2010
, “
A Study on Contact Force Between Wraps of Scroll Compressor for CO_2 Refrigerant
,”
Trans. Jpn. Soc. Refrig. Air Conditioning Eng.
,
27
(
2
), pp.
75
86
.
12.
Ahn
,
S.
,
Choi
,
S.
, and
Rhim
,
Y. C.
,
2018
, “
Analysis of Journal Bearings in a Scroll Compressor Considering Deflections and Dynamics of the Crankshaft
,”
Int. J. Refrig.
,
93
, pp.
205
212
.
13.
Mi
,
J.
, and
Meng
,
Y.
,
2014
, “
Numerical Analyses of Hydrodynamic Lubrication and Dynamics of the Rolling Piston and Crankshaft in a Rotary Compressor
,”
Tribol. Trans.
,
57
(
6
), pp.
1136
1147
.
14.
Wang
,
C.
,
Wu
,
J.
,
Cheng
,
J.
,
Zhang
,
S.
, and
Zhang
,
K.
,
2022
, “
Elasto-Hydrodynamic Lubrication of the Journal Bearing System With a Relief Groove in the Scroll Compressor: Simulation and Experiment
,”
Tribol. Int.
,
165
, p.
107252
.
15.
Liu
,
R.
,
Jing
,
L.
,
Meng
,
X.
, and
Lyu
,
B.
,
2021
, “
Mixed Elastohydrodynamic Analysis of a Coupled Journal-Thrust Bearing System in a Rotary Compressor Under High Ambient Pressure
,”
Tribol. Int.
,
159
, p.
106943
.
16.
Gu
,
Y.
,
Ren
,
G.
, and
Zhou
,
M.
,
2021
, “
A Novel Method for Calculating the Dynamic Force Coefficients of Gas Foil Bearings and Its Application in the Rotordynamic Analysis
,”
J. Sound Vib.
,
515
, p.
116466
.
17.
Wang
,
C.
,
Zhong
,
H.
,
Zhang
,
S.
,
Cheng
,
J.
, and
Wu
,
J.
,
2024
, “
Experimental and Numerical Study on the Dynamic and Lubrication Characteristics of the Rotor-Bearing-Frame System in a Variable-Speed Scroll Compressor
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
doi.org/10.1177/09544089241230256
18.
Voitus
,
A.
,
Arghir
,
M.
, and
Hassini
,
M.-A.
,
2023
, “
Effect of Air-Liquid Homogeneous Mixture on the Linear Dynamic Characteristics of a Hydrostatic Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121018
.
19.
Garcia
,
M.
,
Bou-Saïd
,
B.
,
Rocchi
,
J.
, and
Grau
,
G.
,
2013
, “
Refrigerant Foil Bearing Behavior—A Thermo-HydroDynamic Study: (Application to Rigid Bearings)
,”
Tribol. Int.
,
65
, pp.
363
369
.
20.
Bouchehit
,
B.
,
Bou-Saïd
,
B.
, and
Garcia
,
M.
,
2016
, “
Static and Dynamic Performances of Refrigerant-Lubricated Bearings
,”
Tribol. Int.
,
96
, pp.
326
348
.
21.
Wilkes
,
J.
, and
White
,
S.
,
2022
, “
Influence of Ambient Pressure on Measured Stiffness and Damping of Radial Gas Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071008
.
22.
Han
,
D.
, and
Bi
,
C.
,
2022
, “
The Partial Derivative Method for Dynamic Stiffness and Damping Coefficients of Supercritical CO2 Foil Bearings
,”
Lubricants
,
10
(
11
), p.
307
.
23.
Li
,
C.
,
Li
,
J.
,
Xu
,
Z.
,
Zhao
,
X.
, and
Du
,
J.
,
2023
, “
Load Carrying Performance of the 2nd and 3rd Generation Journal Bump Foil Bearings Including Two Dimensional Stiffness Variations
,”
Tribol. Int.
,
190
, p.
109016
.
24.
Chen
,
Z.
,
Wu
,
J.
, and
Li
,
G.
,
2018
, “
Experimental Study on the Tribological Characteristic of Vane–Roller Interface of HC290 Rotary Compressor With Mineral Oil
,”
Int. J. Refrig.
,
94
, pp.
205
213
.
25.
Zhai
,
L. M.
,
Luo
,
Y. Y.
, and
Wang
,
Z. W.
,
2015
, “
Study About the Influence of Cavitation on the Dynamic Characteristics for the Sliding Bearing
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
72
(
4
), p.
042046
.
26.
Zhong
,
H.
,
Lei
,
B.
,
Zhang
,
L.
,
Da
,
L.
,
Wang
,
C.
, and
Wu
,
J.
,
2024
, “
Performance Research and Improvement of Ultra-High-Speed R290 Rotary Compressor
,”
Int. J. Refrig.
,
165
, pp.
500
512
.
27.
Zhang
,
F.
,
Fillot
,
N.
,
Hauleitner
,
R.
, and
Morales-Espejel
,
G. E.
,
2022
, “
Thermal-Elastohydrodynamic Contacts Lubricated With Oil/Refrigerant Solutions: A New Cavitation Modeling Approach Based on Refrigerant Solubility
,”
ASME J. Tribol.
,
144
(
8
), p.
081602
.
28.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
29.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
30.
Seeton
,
C. J.
, and
Hrnjak
,
P.
,
2006
, “
Thermophysical Properties of CO2-Lubricant Mixtures and Their Affect on 2-Phase Flow in Small Channels (Less Than 1mm)
,”
International Refrigeration and Air Conditioning Conference at Purdue
,
West Lafayette, IN
,
July 17–20
, p.
774
.
31.
Wang
,
C.
,
Wu
,
J.
,
Du
,
Y.
, and
Lei
,
B.
,
2020
, “
Lubricating Condition Evaluation of the Rotary Compressor Under High Ambient Temperature
,”
Int. J. Refrig.
,
118
, pp.
220
229
.
32.
Wu
,
J.
,
Chen
,
Z.
,
Lin
,
J.
, and
Li
,
J.
,
2018
, “
Experimental Analysis on R290 Solubility and R290/Oil Mixture Viscosity in Oil Sump of the Rotary Compressor
,”
Int. J. Refrig.
,
94
, pp.
24
32
.
33.
ASTM International
,
2020
,
ASTM D314–20 Standard Practice for Viscosity-Temperature Equations and Charts for Liquid Petroleum or Hydrocarbon Products
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
1
6
.
34.
Chasalevris
,
A.
, and
Sfyris
,
D.
,
2013
, “
Evaluation of the Finite Journal Bearing Characteristics, Using the Exact Analytical Solution of the Reynolds Equation
,”
Tribol. Int.
,
57
, pp.
216
234
.
35.
Lund
,
J. W.
,
1987
, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
,
109
(
1
), pp.
37
41
.
36.
Yadav
,
S. K.
,
Rajput
,
A. K.
,
Ram
,
N.
, and
Sharma
,
S. C.
,
2018
, “
A Direct Numerical Approach to Compute the Nonlinear Rotordynamic Coefficient of the Noncircular Gas Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
232
(
4
), pp.
453
468
.
37.
Wu
,
J. H.
,
Yang
,
L. D.
, and
Hou
,
J.
,
2012
, “
Experimental Performance Study of a Small Wall Room Air Conditioner Retrofitted With R290 and R1270
,”
Int. J. Refrig.
,
35
(
7
), pp.
1860
1868
.
38.
Chen
,
R.
,
Wu
,
J.
, and
Duan
,
J.
,
2019
, “
Performance and Refrigerant Mass Distribution of a R290 Split Air Conditioner With Different Lubricating Oils
,”
Appl. Therm. Eng.
,
162
, p.
114225
.
39.
Rao
,
J. S.
,
1996
, “Hydrodynamic Bearings,”
Rotor Dynamics
, Third ed.,
New Age International
,
New York City
, pp.
189
195
.
40.
Dhande
,
D. Y.
, and
Pande
,
D. W.
,
2018
, “
Multiphase Flow Analysis of Hydrodynamic Journal Bearing Using CFD Coupled Fluid Structure Interaction Considering Cavitation
,”
J. King Saud Univ. Eng. Sci.
,
30
(
4
), pp.
345
354
.
You do not currently have access to this content.