Abstract

The surface conditions of a machined part hold substantial significance in the manufacturing domain as they influence the overall tribological performance and structural characteristics of a service component. The quality control approach focuses on the assessment of surface roughness parameters to ensure the performance and reliability of components. This article presents an application of fringe projection profilometry (FPP) for three-dimensional (3D) surface roughness measurement, advancing beyond typical 3D mapping techniques in the field of surface metrology. FPP is a noncontact optical method with cost-efficient technology that can operate at a higher speed with precise accuracy and resolution. To address the issue of roughness criterion on metallic surfaces, a wide range of machined components were considered, viz., ground, milled, and electric-discharge machined surfaces, for the first time. The surface roughness assessment of these machined surfaces belonging to a roughness range of 0.2–15 µm has been carried out using a five-frame phase-shifting algorithm. Fringe patterns were captured at four different orientations (0 deg, 30 deg, 60 deg, and 90 deg), and the discrete cosine transformation technique was used to unwrap phase maps. The unwrapped phase maps were utilized to calculate the phase height profile, and eventually, the 3D roughness values of machined surfaces were computed. The results were validated using a mechanical stylus profilometer, and it was determined that R2 values were above 0.9, which indicated the robustness of the analysis. The study of utilizing FPP contributes to advancements in optical metrology for modern manufacturing and quality control.

References

1.
Gao
,
W.
,
Haitjema
,
H.
,
Fang
,
F. Z.
,
Leach
,
R. K.
,
Cheung
,
C. F.
,
Savio
,
E.
, and
Linares
,
J. M.
,
2019
, “
O
n
-Machine and In-Process Surface Metrology for Precision Manufacturing
,”
CIRP Ann.
,
68
(
2
), pp.
843
866
.
2.
Chen
,
J.
,
Lin
,
J.
,
Zhang
,
M.
, and
Lin
,
Q.
,
2024
, “
Predicting Surface Roughness in Turning Complex-Structured Workpieces Using Vibration-Signal-Based Gaussian Process Regression
,”
Sensors
,
24
(
7
), p.
2117
.
3.
Dhanasekar
,
B.
, and
Ramamoorthy
,
B.
,
2008
, “
Digital Speckle Interferometry for Assessment of Surface Roughness
,”
Opt. Lasers Eng.
,
46
(
3
), pp.
272
280
.
4.
Güneş
,
A.
,
Şahin
,
Ö. S.
,
Düzcükoğlu
,
H.
,
Salur
,
E.
,
Aslan
,
A.
,
Kuntoğlu
,
M.
,
Giasin
,
K.
, and
Pimenov
,
D. Y.
,
2021
, “
Optimization Study on Surface Roughness and Tribological Behavior of Recycled Cast Iron Reinforced Bronze MMCs Produced by Hot Pressing
,”
Materials
,
14
(
12
), p.
3364
.
5.
Dahnel
,
A. N.
,
Ghani
,
M. A. A.
,
Raof
,
N. A.
,
Mokhtar
,
S.
, and
Khairussaleh
,
N. K. M.
,
2022
, “
Analysis of Defects on Machined Surfaces of Aluminum Alloy (Al 7075) Using Imaging and Topographical Techniques
,”
Int. J. Metrol. Qual. Eng.
,
13
(
12
), pp.
1
8
.
6.
Ishfaq
,
K.
,
Sana
,
M.
,
Waseem
,
M. U.
,
Anwar
,
S.
,
Alfaify
,
A. Y.
, and
Zia
,
A. W.
,
2023
, “
Surface Quality Investigation in Surfactant-Based EDM of Inconel 617 Using Deep Cryogenically Treated Electrodes
,”
Int. J. Adv. Manuf. Technol.
,
127
(
1–2
), pp.
861
878
.
7.
Sztankovics
,
I.
,
2024
, “
The Analytical and Experimental Analysis of the Machined Surface Roughness in High-Feed Tangential Turning
,”
Eng
,
5
(
3
), pp.
1768
1784
.
8.
Hashmi
,
A. W.
,
Mali
,
H. S.
,
Meena
,
A.
,
Hashmi
,
M. F.
, and
Bokde
,
N. D.
,
2023
, “
Surface Characteristics Measurement Using Computer Vision: A Review
,”
Comput. Model. Eng. Sci.
,
135
(
2
), pp.
917
1005
.
9.
Ali
,
J. M.
,
Jailani
,
H. S.
, and
Murugan
,
M.
,
2020
, “
Surface Roughness Evaluation of Electrical Discharge Machined Surfaces Using Wavelet Transform of Speckle Line Images
,”
Measurement
,
149
, p.
107029
.
10.
Palová
,
K.
,
Kelemenová
,
T.
, and
Kelemen
,
M.
,
2023
, “
Measuring Procedures for Evaluating the Surface Roughness of Machined Parts
,”
Appl. Sci.
,
13
(
16
), p.
9385
.
11.
Alzyod
,
H.
, and
Ficzere
,
P.
,
2024
, “
Neosanding Postprocessing for Improving Surface Roughness of Extrusion-Based 3D Printing of PLA Parts: A Comparative Analysis of Stylus Profilometer and Confocal Profilometry Methods
,”
J. Braz. Soc. Mech. Sci. Eng.
,
46
(
4
), p.
238
.
12.
Nammi
,
S.
, and
Ramamoorthy
,
B.
,
2014
, “
Effect of Surface Lay in the Surface Roughness Evaluation Using Machine Vision
,”
Optik
,
125
(
15
), pp.
3954
3960
.
13.
Catalucci
,
S.
,
Thompson
,
A.
,
Piano
,
S.
,
Branson
,
D. T.
, and
Leach
,
R.
,
2022
, “
Optical Metrology for Digital Manufacturing: A Review
,”
Int. J. Adv. Manuf. Technol.
,
120
(
7–8
), pp.
4271
4290
.
14.
Rowe
,
S. H.
, and
Welford
,
W. T.
,
1967
, “
Surface Topography of Non-Optical Surfaces by Projected Interference Fringes
,”
Nature
,
216
(
5117
), pp.
786
787
.
15.
Windecker
,
R.
,
Franz
,
S.
, and
Tiziani
,
H. J.
,
1999
, “
Optical Roughness Measurements With Fringe Projection
,”
Appl. Opt.
,
38
(
13
), p.
2837
.
16.
Reid
,
G.
,
1986
, “
Automatic Fringe Pattern Analysis: A Review
,”
Opt. Lasers Eng.
,
7
(
1
), pp.
37
68
.
17.
Su
,
X.
, and
Zhang
,
Q.
,
2010
, “
Dynamic 3-D Shape Measurement Method: A Review
,”
Opt. Lasers Eng.
,
48
(
2
), pp.
191
204
.
18.
Lai
,
G.
, and
Yatagai
,
T.
,
1991
, “
Generalized Phase-Shifting Interferometry
,”
J. Opt. Soc. Am. A
,
8
(
5
), p.
822
.
19.
Bian
,
X.
,
Su
,
X.
, and
Chen
,
W.
,
2011
, “
Analysis on 3D Object Measurement Based on Fringe Projection
,”
Optik
,
122
(
6
), pp.
471
474
.
20.
Zhang
,
S.
,
2010
, “
Recent Progresses on Real-Time 3D Shape Measurement Using Digital Fringe Projection Techniques
,”
Opt. Lasers Eng.
,
48
(
2
), pp.
149
158
.
21.
Fujii
,
H.
, and
Asakura
,
T.
,
1974
, “
Effect of Surface Roughness on the Statistical Distribution of Image Speckle Intensity
,”
Opt. Commun.
,
11
(
1
), pp.
35
38
.
22.
Ohtsubo
,
J.
, and
Asakura
,
T.
,
1975
, “
Statistical Properties of Speckle Intensity Variations in the Diffraction Field Under Illumination of Partially Coherent Light
,”
Nouv. Rev. Opt.
,
6
(
4
), pp.
189
195
.
23.
Ohtsubo
,
J.
,
Fujii
,
H.
, and
Asakura
,
T.
,
1975
, “
Surface Roughness Measurement by Using Speckle Pattern
,”
Jpn. J. Appl. Phys.
,
14
(
S1
), pp.
293
298
.
24.
Beckmann
,
P.
,
1967
, “
II Scattering of Light by Rough Surfaces
,”
Prog Opt.
,
6
, pp.
53
69
.
25.
Toh
,
S.
,
Shang
,
H.
, and
Tay
,
C.
,
1998
, “
Surface-Roughness Study Using Laser Speckle Method
,”
Opt. Lasers Eng.
,
29
(
2–3
), pp.
217
225
.
26.
Xu
,
J.
, and
Zhang
,
S.
,
2020
, “
Status, Challenges, and Future Perspectives of Fringe Projection Profilometry
,”
Opt. Lasers Eng.
,
135
, p.
106193
.
27.
Zhang
,
G.
,
Liu
,
Y.
,
Yao
,
Q.
,
Deng
,
H.
,
Zhao
,
H.
,
Zhang
,
Z.
, and
Yang
,
S.
,
2024
, “
Multi-View Fringe Projection Profilometry for Surfaces With Intricate Structures and High Dynamic Range
,”
Opt. Express
,
32
(
11
), p.
19146
.
28.
He
,
X.
, and
Kemao
,
Q.
,
2021
, “
A Comparative Study on Temporal Phase Unwrapping Methods in High-Speed Fringe Projection Profilometry
,”
Opt. Lasers Eng.
,
142
, p.
106613
.
29.
Zhang
,
H.
,
Vallabh
,
C. K. P.
,
Xiong
,
Y.
, and
Zhao
,
X.
,
2022
, “
A Systematic Study and Framework of Fringe Projection Profilometry With Improved Measurement Performance for In-Situ LPBF Process Monitoring
,”
Measurement
,
191
, p.
110796
.
30.
Cheng
,
X.
,
Liu
,
X.
,
Li
,
Z.
,
Zhong
,
K.
,
Han
,
L.
,
He
,
W.
,
Gan
,
W.
,
Xi
,
G.
,
Wang
,
C.
, and
Shi
,
Y.
,
2019
, “
High-Accuracy Globally Consistent Surface Reconstruction Using Fringe Projection Profilometry
,”
Sensors
,
19
(
3
), p.
668
.
31.
Zhao
,
X.
,
Mo
,
R.
,
Chang
,
Z.
, and
Dong
,
J.
,
2020
, “
3D-Design-Model-Assisted Shiny Surface Shape Measurement in Fringe Projection Profilometry
,”
Meas. Sci. Technol.
,
32
(
3
), p.
035019
.
32.
Qian
,
J.
,
Feng
,
S.
,
Xu
,
M.
,
Tao
,
T.
,
Shang
,
Y.
,
Chen
,
Q.
, and
Zuo
,
C.
,
2021
, “
High-Resolution Real-Time 360 3D Surface Defect Inspection With Fringe Projection Profilometry
,”
Opt. Lasers Eng.
,
137
, p.
106382
.
33.
Wang
,
H.
,
Ma
,
J.
,
Yang
,
H.
,
Sun
,
F.
,
Wei
,
Y.
, and
Wang
,
L.
,
2021
, “
Development of Three-Dimensional Pavement Texture Measurement Technique Using Surface Structured Light Projection
,”
Measurement
,
185
, p.
110003
.
34.
Zhu
,
Z.
,
Li
,
M.
,
Zhou
,
F.
, and
You
,
D.
,
2023
, “
Stable 3D Measurement Method for High Dynamic Range Surfaces Based on Fringe Projection Profilometry
,”
Opt. Lasers Eng.
,
166
, p.
107542
.
35.
Zheng
,
Z.
,
Gao
,
J.
,
Zheng
,
Z.
, and
Zhang
,
L.
,
2023
, “
An Anti-Saturation Phase Retrieval Algorithm Based on Optimal Composite Fringe Patterns for 3D Measurement With Shiny Surface
,”
Measurement
,
217
, p.
113095
.
36.
Zhang
,
H.
,
Vallabh
,
C. K. P.
, and
Zhao
,
X.
,
2023
, “
Influence of Spattering on In-Process Layer Surface Roughness During Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
104
, pp.
289
306
.
37.
Dai
,
M.
,
Wang
,
X.
,
Cheng
,
C.
,
Chen
,
Z.
, and
Deng
,
J.
,
2023
, “
Efficient Evaluation of Concrete Fracture Surface Roughness Using Fringe Projection Technology
,”
Materials
,
16
(
12
), p.
4430
.
38.
Gorthi
,
S. S.
, and
Rastogi
,
P.
,
2010
, “
Fringe Projection Techniques: Whither We Are?
,”
Opt. Lasers Eng.
,
48
(
2
), pp.
133
140
.
39.
Kiran
,
M.
,
Ramamoorthy
,
B.
, and
Radhakrishnan
,
V.
,
1998
, “
Evaluation of Surface Roughness by Vision System
,”
Int. J. Mach. Tools Manuf.
,
38
(
5–6
), pp.
685
690
.
40.
Chen
,
T. Y.-F.
,
Lo
,
Y.-L.
,
Lin
,
Z.-H.
, and
Lin
,
J.-Y.
,
2022
, “
Simultaneous Extraction of Profile and Surface Roughness of 3D SLM Components Using Fringe Projection Method
,”
Rapid Prototyp. J.
,
28
(
4
), pp.
789
801
.
41.
Guo
,
H.
,
Zhao
,
Z.
, and
Chen
,
M.
,
2007
, “
Efficient Iterative Algorithm for Phase-Shifting Interferometry
,”
Opt. Lasers Eng.
,
45
(
2
), pp.
281
292
.
42.
Wang
,
J.
, and
Yang
,
Y.
,
2022
, “
Phase Extraction Accuracy Comparison Based on Multi-Frequency Phase-Shifting Method in Fringe Projection Profilometry
,”
Measurement
,
199
, p.
111525
.
43.
Buchenau
,
T.
,
Mertens
,
T.
,
Lohner
,
H.
,
Bruening
,
H.
, and
Amkreutz
,
M.
,
2023
, “
Comparison of Optical and Stylus Methods for Surface Texture Characterisation in Industrial Quality Assurance of Post-Processed Laser Metal Additive Ti-6Al-4V
,”
Materials
,
16
(
13
), p.
4815
.
44.
Shanmugam
,
P.
, and
Falaggis
,
K.
,
2023
, “
Fringe Projector With Submillimeter Fringe Spacing at a Meter-Scale Field of View
,”
Appl. Opt.
,
62
(
31
), p.
8334
.
45.
Qi
,
C.
, and
Feng
,
P.
,
2024
, “
Calibration Method for Fringe Projection Profilometry With Complex Distortion Based on B-Spline Surface
,”
Opt. Lasers Eng.
,
180
, p.
108323
.
46.
Wu
,
Z.
,
Guo
,
W.
,
Li
,
Y.
,
Liu
,
Y.
, and
Zhang
,
Q.
,
2020
, “
High-Speed and High-Efficiency Three-Dimensional Shape Measurement Based on Gray-Coded Light
,”
Photonics Res.
,
8
(
6
), p.
819
.
47.
Feng
,
S.
,
Zuo
,
C.
,
Zhang
,
L.
,
Tao
,
T.
,
Hu
,
Y.
,
Yin
,
W.
,
Qian
,
J.
, and
Chen
,
Q.
,
2021
, “
Calibration of Fringe Projection Profilometry: A Comparative Review
,”
Opt. Lasers Eng.
,
143
, p.
106622
.
48.
Yu
,
H.
,
Zheng
,
D.
,
Fu
,
J.
,
Zhang
,
Y.
,
Zuo
,
C.
, and
Han
,
J.
,
2020
, “
Deep Learning-Based Fringe Modulation-Enhancing Method for Accurate Fringe Projection Profilometry
,”
Opt. Express
,
28
(
15
), p.
21692
.
49.
Suresh
,
R.
,
Basavarajappa
,
S.
,
Gaitonde
,
V. N.
,
Samuel
,
G. L.
, and
Davim
,
J. P.
,
2013
, “
State-of-the-Art Research in Machinability of Hardened Steels
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
2
), pp.
191
209
.
50.
Moldovan
,
C.
, and
Sticlaru
,
C.
,
2023
, “
Performance Analysis of Polymer Additive Manufactured Gear Bearings
,”
Appl. Sci.
,
13
(
22
), p.
12383
.
51.
Zhang
,
S.
,
Li
,
Y.
,
Wang
,
G.
,
Qi
,
Z.
, and
Zhou
,
Y.
,
2024
, “
A Novel Method for Calculating the Fractal Dimension of Three-Dimensional Surface Topography on Machined Surfaces
,”
Chaos Soliton. Fract.
,
180
, p.
114573
.
52.
Huang
,
W.
,
Mei
,
X.
,
Fan
,
Z.
,
Jiang
,
G.
,
Wang
,
W.
, and
Zhang
,
R.
,
2023
, “
Pixel-Wise Phase Unwrapping of Fringe Projection Profilometry Based on Deep Learning
,”
Measurement
,
220
, p.
113323
.
53.
Hariharan
,
P.
,
Oreb
,
B. F.
, and
Eiju
,
T.
,
1987
, “
Digital Phase-Shifting Interferometry: A Simple Error-Compensating Phase Calculation Algorithm
,”
Appl. Opt.
,
26
(
13
), p.
2504
.
54.
Zuo
,
C.
,
Feng
,
S.
,
Huang
,
L.
,
Tao
,
T.
,
Yin
,
W.
, and
Chen
,
Q.
,
2018
, “
Phase Shifting Algorithms for Fringe Projection Profilometry: A Review
,”
Opt. Lasers Eng.
,
109
(
200
), pp.
23
59
.
55.
Arevalillo-Herráez
,
M.
,
Segura-García
,
J.
,
Arnau-González
,
P.
, and
Katsigiannis
,
S.
,
2022
, “
Wrap Reduction Algorithm for Fringe Projection Profilometry
,”
Opt. Lasers Eng.
,
158
, p.
107185
.
56.
Ahmad
,
A.
,
Dubey
,
V.
,
Butola
,
A.
,
Tinguely
,
J.-C.
,
Ahluwalia
,
B. S.
, and
Mehta
,
D. S.
,
2020
, “
Sub-Nanometer Height Sensitivity by Phase Shifting Interference Microscopy Under Environmental Fluctuations
,”
Opt. Express
,
28
(
7
), p.
9340
.
57.
Novak
,
J.
,
2001
, “Methods for 2-D Phase Unwrapping in MATLAB,” https://www2.humusoft.cz/www/papers/tcp01/002_novak.pdf
58.
Zhang
,
H.
,
Wu
,
F.
,
Lalor
,
M. J.
, and
Burton
,
D. R.
,
1999
, “
Spatiotemporal Phase Unwrapping and Its Application in Fringe Projection Fiber Optic Phase-Shifting Profilometry
,”
Interferometry ‘99: Techniques and Technologies
,
Pultusk Castle, Poland
,
Aug. 13
, pp.
211
221
.
59.
Bhaduri
,
B.
,
Kothiyal
,
M.
, and
Mohan
,
N.
,
2008
, “
A Comparative Study of Phase-Shifting Algorithms in Digital Speckle Pattern Interferometry
,”
Optik
,
119
(
3
), pp.
147
152
.
60.
Li
,
G.
,
Li
,
Y.
, and
Liu
,
W.
,
2024
, “
Improved Least Squares Phase Unwrapping Method Based on Chebyshev Filter
,”
Appl. Sci.
,
14
(
11
).
61.
Yousefi
,
S.
,
Najjar-Ghabel
,
S.
,
Danehchin
,
R.
,
Band
,
S. S.
,
Hsu
,
C. C.
, and
Mosavi
,
A.
,
2024
, “
Automatic Melanoma Detection Using Discrete Cosine Transform Features and Metadata on Dermoscopic Images
,”
J. King Saud Univ. Comput. Inf. Sci.
,
36
(
2
), p.
101944
.
62.
Takeda
,
M.
, and
Mutoh
,
K.
,
1983
, “
Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes
,”
Appl. Opt.
,
22
(
19
), pp.
3977
3982
.
63.
Lu
,
P.
, and
Wood
,
R. J.
,
2020
, “
Tribological Performance of Surface Texturing in Mechanical Applications-A Review
,”
Surf. Topogr. Metrol. Prop.
,
8
(
4
).
64.
Edachery
,
V.
,
Swamybabu
,
V.
,
Adarsh
,
D.
, and
Kailas
,
S. V.
,
2022
, “
Influence of Surface Roughness Frequencies and Roughness Parameters on Lubricant Wettability Transitions in Micro-Nano Scale Hierarchical Surfaces
,”
Tribol. Int.
,
165
, p.
107316
.
65.
Whitehead
,
K.
, and
Verran
,
J.
,
2006
, “
The Effect of Surface Topography on the Retention of Microorganisms
,”
Food Bioprod. Process
,
84
(
4
), pp.
253
259
.
66.
ISO
,
2024
, “Geometrical Product Specifications,” https://www.iso.org/obp/ui/#iso:std:iso:25178:-2:ed-2:v1:en, Accessed November 11, 2024.
67.
Rosentritt
,
M.
,
Schneider-Feyrer
,
S.
, and
Kurzendorfer
,
L.
,
2024
, “
Comparison of Surface Roughness Parameters Ra/Sa and Rz/Sz With Different Measuring Devices
,”
J. Mech. Behav. Biomed. Mater.
,
150
, p.
106349
.
68.
Zhang
,
H.
,
Vallabh
,
C. K. P.
, and
Zhao
,
X.
,
2023
, “
Machine Learning Enhanced High Dynamic Range Fringe Projection Profilometry for In-Situ Layer-Wise Surface Topography Measurement During LPBF Additive Manufacturing
,”
Precis. Eng.
,
84
, pp.
1
14
.
You do not currently have access to this content.