Abstract

Manufacturing errors impacted the gas porous bearing's performance, particularly the waviness on the rotor surface that repeatedly squeezed the gas film during rotation. This study investigated the effects of waviness errors using a novel mixed computational fluid dynamics (CFD) boundary condition that combined steady circumferential motion with transient radial motion. The mixed boundary condition was verified against numerical results. A transient CFD model was developed for gas porous bearings with rotor surface waviness. The transient squeezing effects from the rotating waviness significantly influenced both the hydrostatic and hydrodynamic performance of the bearing. By implementing periodic sinusoidal waviness, the effects of eccentricity, waviness amplitude, waviness number, rotor speed, and supply pressure on the performances of the gas porous bearing were investigated.

References

1.
Gao
,
Q.
,
Chen
,
W.
,
Lu
,
L.
,
Huo
,
D.
, and
Cheng
,
K.
,
2019
, “
Aerostatic Bearings Design and Analysis With the Application to Precision Engineering: State-of-the-Art and Future Perspectives
,”
Tribol. Int.
,
135
, pp.
1
17
.
2.
San Andres
,
L.
,
Cable
,
T. A.
,
Zheng
,
Y.
,
De Santiago
,
O.
, and
Devitt
,
D.
,
2016
, “
Assessment of Porous Type Gas Bearings Measurement of Bearing Performance and Rotor Vibrations
,”
ASME Turbo Expo
, No. GT2016-57876.
3.
San Andres
,
L.
,
Yang
,
J.
, and
McGowan
,
R.
,
2021
, “
Measurements of Static and Dynamic Load Performance of a 102 MM Carbon-Graphite Porous Surface Tilting-Pad Gas Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111017
.
4.
Fu
,
C.
,
Sinou
,
J. J.
,
Zhu
,
W.
,
Lu
,
K.
, and
Yang
,
Y.
,
2023
, “
A State-of-the-Art Review on Uncertainty Analysis of Rotor Systems
,”
Mech. Syst. Signal Process.
,
183
, p.
109619
.
5.
Zoupas
,
L.
,
Wodtke
,
M.
,
Papadopoulos
,
C. I.
, and
Wasilczuk
,
M.
,
2019
, “
Effect of Manufacturing Errors of the Pad Sliding Surface on the Performance of the Hydrodynamic Thrust Bearing
,”
Tribol. Int.
,
134
, pp.
211
220
.
6.
Rasheed
,
H. E.
,
1998
, “
Effect of Surface Waviness on the Hydrodynamic Lubrication of a Plain Cylindrical Sliding Element Bearing
,”
Wear
,
223
(
1–2
), pp.
1
6
.
7.
Bangotra
,
A.
, and
Sharma
,
S.
,
2024
, “
Effect of Partial Surface Waviness on the Dynamic and Stability Performance of Journal Bearing
,”
Lubr. Sci.
,
36
(
3
), pp.
197
215
.
8.
Bangotra
,
A.
,
Sharma
,
S.
,
Taufique
,
R.
, and
Byotra
,
D.
,
2023
, “
Performance Analysis of Journal Bearing Having Surface Waviness Operating Under Misaligned Condition
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
237
(
8
), pp.
1657
1669
.
9.
Li
,
P.
,
Zhang
,
H.
,
Li
,
X.
,
Shi
,
Z.
,
Xiao
,
S.
, and
Gu
,
F.
,
2023
, “
Manufacturing Error and Misalignment Effect on the Transient Lubrication Behavior of Dynamically Loaded Journal Bearing With Micro-Groove
,”
Phys. Fluids
,
35
(
7
), p.
073601
.
10.
Cai
,
J.
,
Han
,
Y.
,
Xiang
,
G.
,
Wang
,
J.
, and
Wang
,
L.
,
2022
, “
Effects of Wear and Shaft-Shape Error Defects on the Tribo-dynamic Response of Water-Lubricated Bearings Under Propeller Disturbance
,”
Phys. Fluids
,
34
(
7
), p.
077118
.
11.
Sun
,
F.
,
Zhang
,
X.
,
Wang
,
X.
,
Su
,
Z.
, and
Wang
,
D.
,
2019
, “
Effects of Shaft Shape Errors on the Dynamic Characteristics of a Rotor-Bearing System
,”
ASME J. Tribol.
,
141
(
10
), p.
101701
.
12.
Wang
,
X.
,
Xu
,
Q.
,
Wang
,
B.
,
Zhang
,
L.
,
Yang
,
H.
, and
Peng
,
Z.
,
2016
, “
Effect of Surface Waviness on the Static Performance of Aerostatic Journal Bearings
,”
Tribol. Int.
,
103
, pp.
394
405
.
13.
Wang
,
X.
,
Xu
,
Q.
,
Huang
,
M.
,
Zhang
,
L.
, and
Peng
,
Z.
,
2017
, “
Effects of Journal Rotation and Surface Waviness on the Dynamic Performance of Aerostatic Journal Bearings
,”
Tribol. Int.
,
112
, pp.
1
9
.
14.
Zhang
,
P.
,
2021
, “
Accuracy Prediction Model of an Orifice-Compensated Aerostatic Bearing
,”
Precis. Eng.
,
72
, pp.
837
846
.
15.
Chen
,
P.
,
Ding
,
J.
,
Zhuang
,
H.
,
Chang
,
Y.
, and
Liu
,
X.
,
2022
, “
Influence of Manufacturing Errors and Misalignment on the Performances of Air Journal Bearings Considering Inertia Effects Based on SUPG Finite Element Method
,”
Measurement
,
189
, p.
110443
.
16.
Chen
,
P.
,
Ding
,
J.
,
Zhuang
,
H.
, and
Chang
,
Y.
,
2023
, “
A Novel Method for Studying Fluid-Solid Interaction Problems of the Rotor System in Air Bearings With Manufacturing Errors
,”
Mech. Syst. Signal Process.
,
202
, p.
110709
.
17.
Zhang
,
G.
,
Zheng
,
J.
,
Yu
,
H.
,
Chen
,
T.
,
Shan
,
S.
, and
Peng
,
C.
,
2024
, “
Influence of Shape Errors and Inertia Effects on the Error Motion of the Aerostatic Spindle
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
238
(
3
), pp.
260
271
.
18.
Song
,
M.
,
Azam
,
S.
,
Jang
,
J.
, and
Park
,
S. S.
,
2017
, “
Effect of Shape Errors on the Stability of Externally Pressurized Air Journal Bearings Using Semi-implicit Scheme
,”
Tribol. Int.
,
115
, pp.
580
590
.
19.
Xia
,
P.
,
Liu
,
Z.
,
Yu
,
X.
, and
Zhao
,
J.
,
2018
, “
A Transient Bulk Flow Model With Circular Whirl Motion for Rotordynamic Coefficients of Annular Seals
,”
Chin. J. Aeronaut.
,
31
(
5
), pp.
1085
1094
.
20.
San Andres
,
L.
,
Yang
,
J.
, and
Devitt
,
A.
,
2021
, “
Porous Gas Journal Bearings: An Exact Solution Revisited and Force Coefficients for Stable Rotordynamic Performance
,”
Appl. Sci.
,
11
(
17
), p.
7949
.
21.
Jiang
,
S.
,
Lin
,
S.
, and
Xu
,
C.
,
2018
, “
Static and Dynamic Characteristics of Externally Pressurized Porous Gas Journal Bearing With Four Degrees-of-Freedom
,”
ASME J. Tribol.
,
140
(
1
), p.
011702
.
22.
Singh
,
K. C.
,
Rao
,
N. S.
, and
Majumdar
,
B. C.
,
1984
, “
Hybrid Porous Gas Journal Bearings: Steady State Solution Incorporating the Effect of Velocity Slip
,”
ASME J. Tribol.
,
106
(
3
), pp.
322
328
.
23.
Elsharkawy
,
A. A.
, and
Guedouar
,
L. H.
,
2001
, “
Hydrodynamic Lubrication of Porous Journal Bearings Using a Modified Brinkman-Extended Darcy Model
,”
Tribol. Int.
,
34
(
11
), pp.
767
777
.
24.
Lin
,
J. R.
, and
Hwang
,
C. C.
,
1994
, “
Hydrodynamic Lubrication of Finite Porous Journal Bearings—Use of the Brinkman-Extended Darcy Model
,”
Int. J. Mech. Sci.
,
36
(
7
), pp.
631
644
.
25.
Zhang
,
P.
,
2020
, “
A Study on Accuracy of Porous Journal Air Bearing
,”
Precis. Eng.
,
66
, pp.
42
51
.
26.
Zhang
,
P.
, and
Zha
,
J.
,
2021
, “
Dynamic Accuracy Model of Porous Journal Air Bearing Considering Rotational Speed
,”
Tribol. Int.
,
161
, p.
107064
.
27.
Cappa
,
S.
,
Reynaerts
,
D.
, and
Al-Bender
,
F.
,
2014
, “
Reducing the Radial Error Motion of an Aerostatic Journal Bearing to a Nanometre Level: Theoretical Modelling
,”
Tribol. Lett.
,
53
(
1
), pp.
27
41
.
28.
Guo
,
Z.
,
Hirano
,
T.
, and
Kirk
,
R. G.
,
2005
, “
Application of CFD Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
445
451
.
29.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
, pp.
8
15
.
30.
Lin
,
Q.
,
Bao
,
Q.
,
Li
,
K.
,
Khonsari
,
M. M.
, and
Zhao
,
H.
,
2018
, “
An Investigation Into the Transient Behavior of Journal Bearing With Surface Texture Based on Fluid-Structure Interaction Approach
,”
Tribol. Int.
,
118
, pp.
246
255
.
31.
Charitopoulos
,
A. G.
,
Efstathiou
,
E. E.
,
Papadopoulos
,
C. I.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2013
, “
Effects of Manufacturing Errors on Tribological Characteristics of 3-D Textured Micro-thrust Bearings
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
2
), pp.
128
142
.
32.
Sun
,
Z.
,
Guan
,
C.
,
Xu
,
H.
,
Hu
,
H.
, and
Dai
,
Y.
,
2024
, “
The Influence of Journal’s Roundness on Rotating Accuracy of Aerostatic Spindle and Precision Improvement by Time-Controlled Grinding
,”
Tribol. Int.
,
197
, p.
109805
.
33.
Zhang
,
X.
,
Ding
,
S.
,
Du
,
F.
,
Ji
,
F.
,
Xu
,
Z.
,
Liu
,
J.
,
Zhang
,
Q.
, and
Zhou
,
Y.
,
2022
, “
Investigation Into Gas Lubrication Performance of Porous Gas Bearing Considering Velocity Slip Boundary Condition
,”
Friction
,
10
(
6
), pp.
891
910
.
34.
Jin
,
X.
,
Xia
,
P.
,
Liu
,
Z.
,
Ma
,
W.
,
Zhang
,
P.
, and
Liang
,
Y.
,
2022
, “
Thermo-hybrid Lubrication FSI-CFD Model for the Static Characteristics of Hybrid Porous Tilting Pad Bearings
,”
Tribol. Int.
,
167
, p.
1073907
.
35.
Xia
,
P.
,
Jin
,
X.
,
Song
,
W.
,
Liang
,
Y.
,
Xu
,
S.
,
Liu
,
J.
,
Liu
,
Z.
, and
Ma
,
W.
,
2024
, “
A Novel Transient Computational Fluid Dynamics-Fluid-Structure Interaction Model for the Pad Adaptive Motion and Rotordynamic Coefficients of Hybrid Porous Tilting Pad Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
238
(
5
), pp.
615
637
.
36.
Cui
,
H.
,
Wang
,
Y.
,
Yue
,
X.
,
Huang
,
M.
, and
Wang
,
W.
,
2017
, “
Effects of Manufacturing Errors on the Static Characteristics of Aerostatic Journal Bearings With Porous Restrictor
,”
Tribol. Int.
,
115
, pp.
246
260
.
37.
Cui
,
H.
,
Wang
,
Y.
,
Yue
,
X.
,
Huang
,
M.
,
Wang
,
W.
, and
Jiang
,
Z.
,
2018
, “
Numerical Analysis and Experimental Investigation Into the Effects of Manufacturing Errors on the Running Accuracy of the Aerostatic Porous Spindle
,”
Tribol. Int.
,
118
, pp.
20
36
.
38.
Li
,
Z.
,
Fang
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2020
, “
Numerical Modeling of Static and Rotordynamic Characteristics for Three Types of Helically Grooved Liquid Annular Seals
,”
ASME J. Vib. Acoust.
,
142
(
4
), p.
041001
.
39.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D. A.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
London
.
40.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.
41.
Zhang
,
M.
,
Childs
,
D. W.
,
Mclean
,
J. E.
,
Tran
,
D. L.
, and
Shrestha
,
H.
,
2019
, “
Experimental Study of the Leakage and Rotordynamic Coefficients of a Long-Smooth Seal With Two-Phase, Mainly Oil Mixtures
,”
ASME J. Tribol.
,
141
(
4
), p.
042201
.
You do not currently have access to this content.