Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

NiTi exhibits an excellent wear resistance, which can be further enhanced by ion implantation. However, there are some limitations to the implantation effects: only a thin layer of about 100 nm can be created. In this paper, the effect of nitrogen ion implantation on the NiTi wear response is investigated. The different loads and durations of tests are taken into account to show that the implanted layer has the most beneficial effect only in a certain range of contact pressure. It was found that the wear volume changes in a non-linear manner with respect to the load and sliding length, for both non- and implanted samples. For the latter, two distinct stages can be distinguished in the wear process: an initial stage characterized by a low wear-rate and a low coefficient of friction, and a second stage in which the wear-rate drastically increases. The duration of the first stage is longer for lower loads. This specific behavior is explained by differences in the hardness distribution, energy dissipation due to the normal load, and differences in the microstructure of the wear tracks. Our results show that the lifetime of NiTi can be improved by ion implantation, thus boding well for applications in harsh environments.

References

1.
Otsuka
,
K.
, and
Ren
,
X. B.
,
2005
, “
Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys
,”
Progr. Mater. Sci.
,
50
(
5
), pp.
511
678
.
2.
Sun
,
L.
,
Huang
,
W. M.
,
Ding
,
Z.
,
Zhao
,
Y.
,
Wang
,
C. C.
,
Purnawali
,
H.
, and
Tang
,
C.
,
2012
, “
Stimulus-Responsive Shape Memory Materials: A Review
,”
Mater. Des.
,
33
, pp.
577
640
.
3.
Ou
,
S. F.
,
Wang
,
Y. H.
,
Huang
,
H. M.
, and
Chen
,
C. F.
,
2023
, “
Effects of Superelasticity and Shape Memory Ability of NiTi-Based Alloys on Deposition Efficiency of Ultrasonic-Assisted Coating
,”
J. Alloys Compd.
,
937
(
15
), p.
168189
.
4.
Zhu
,
J. N.
,
Zhu
,
W.
,
Borisov
,
E.
,
Yao
,
X.
,
Riemslag
,
T.
,
Goulas
,
C.
,
Popovich
,
A.
, et al
,
2023
, “
Effect of Heat Treatment on Microstructure and Functional Properties of Additively Manufactured NiTi Shape Memory Alloys
,”
J. Alloys Compd.
,
967
(
10
), p.
171740
.
5.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
6.
Yan
,
W.
,
2006
, “
Theoretical Investigation of Wear-Resistance Mechanism of Superelastic Shape Memory Alloy NiTi
,”
Mater. Sci. Eng. A
,
427
(
1–2
), pp.
348
355
.
7.
Li
,
D. Y.
, and
Liu
,
R.
,
1999
, “
The Mechanism Responsible for High Wear Resistance of Pseudo-Elastic TiNi Alloy – A Novel Tribo-Material
,”
Wear
,
225–229
, pp.
777
783
.
8.
Liu
,
Y.
, and
Liu
,
F.
,
2012
, “
Transformation Behaviors of Ti48.5Ni48Fe2Nb1.5 Dependence of Annealing and Thermomechanical Cycling
,”
Rare Met.
,
31
(
3
), p.
237
. 1007/c12598-012-0497-4
9.
Luo
,
P.
,
Wang
,
S. N.
,
Zhao
,
T. T.
, and
Li
,
Y.
,
2013
, “
Surface Characteristics, Corrosion Behavior, and Antibacterial Property of Ag-Implanted NiTi Alloy
,”
Rare Met.
,
32
(
2
), pp.
113
121
.
10.
Ozbulut
,
O. E.
,
Hurlebaus
,
S.
, and
Desroches
,
R.
,
2011
, “
Seismic Response Control Using Shape Memory Alloys: A Review
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), pp.
1531
1549
.
11.
Aliasgarian
,
R.
,
Ghasemi
,
H. M.
, and
Abedini
,
M.
,
2011
, “
Tribological Behavior of Heat Treated Ni-Rich NiTi Alloys
,”
ASME J. Tribol.
,
133
(
3
), p.
031602
.
12.
Qian
,
L. M.
,
Sun
,
Q. P.
, and
Zhou
,
Z. R.
,
2005
, “
Fretting Wear Behavior of Superelastic Nickel Titanium Shape Memory Alloy
,”
Tribol. Lett.
,
18
(
40
), pp.
463
475
.
13.
Kosec
,
T.
,
Mocnik
,
P.
, and
Legat
,
A.
,
2014
, “
The Tribocorrosion Behaviour of NiTi Alloy
,”
Appl. Surf. Sci.
,
288
, pp.
727
735
.
14.
Abedini
,
M.
,
Ghasemi
,
H. M.
, and
Ahmadabadi
,
M. N.
,
2009
, “
Tribological Behavior of NiTi Alloy in Martensitic and Austenitic States
,”
Mater. Des.
,
30
(
10
), pp.
4493
4497
.
15.
Ni
,
W.
,
Cheng
,
Y. T.
,
Lukitsch
,
M. J.
,
Weiner
,
A. M.
,
Lev
,
L. C.
, and
Grummon
,
D. S.
,
2004
, “
Effects of the Ratio of Hardness to Young’s Modulus on the Friction and Wear Behavior of Bilayer Coatings
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4028
4030
.
16.
Qian
,
L. M.
,
Xiao
,
X. D.
,
Sun
,
Q. P.
, and
Yu
,
T. X.
,
2004
, “
Anomalous Relationship Between Hardness and Wear Properties of a Superelastic Nickel–Titanium Alloy
,”
Appl. Phys. Lett.
,
84
(
7
), pp.
1076
1078
.
17.
Yan
,
L.
,
Liu
,
Y.
,
O’Neil
,
G.
, and
Wang
,
W.
,
2018
, “
Effect of Grain Boundary on the Wear Behaviour of NiTi Shape Memory Alloys When Mf<>
,”
Tribol. Lett.
,
66
(
1
), p.
44
.
18.
Liu
,
P.
,
Kan
,
Q.
, and
Yin
,
H.
,
2019
, “
Effect of Grain Size on Wear Resistance of Nanocrystalline NiTi Shape Memory Alloy
,”
Mater. Lett.
,
241
(
15
), pp.
43
46
.
19.
Sattari
,
M.
,
Kadkhodaei
,
M.
,
Akbarzadeh
,
S.
,
Gholami
,
R.
, and
Beheshti
,
A.
,
2022
, “
Wear in Superelastic Shape Memory Alloys: A Thermomechanical Analysis
,”
Wear
,
488–489
, pp.
204139
.
20.
Yan
,
L.
, and
Liu
,
Y.
,
2015
, “
Wear Behavior of Austenitic NiTi Shape Memory Alloy, Shape Memory
,”
Superelasticity
,
1
(
1
), pp.
58
68
.
21.
Liu
,
F.
,
Xu
,
J. L.
,
Yu
,
D. Z.
,
Wang
,
F. P.
, and
Zhao
,
L. C.
,
2009
, “
Wear Resistance of Micro-Arc Oxidation Coatings on Biomedical NiTi Alloy
,”
J. Alloys Compd.
,
487
(
13
), pp.
391
394
.
22.
Oliveira
,
R. M.
,
Fernandes
,
B. B.
,
Carreri
,
F. C.
,
Goncalves
,
J. A. N.
,
Ueda
,
M.
,
Silva
,
M. M. N. F.
,
Silva
,
M. M.
,
Pichon
,
L.
,
Camargo
,
E. N.
, and
Otubo
,
J.
,
2012
, “
Surface Modification of NiTi by Plasma Based Ion Implantation for Application in Harsh Environments
,”
Appl. Surf. Sci.
,
263
(
4
), pp.
763
768
.
23.
Yuan
,
B.
,
Li
,
H.
,
Gao
,
Y.
,
Chung
,
C. Y.
, and
Zhu
,
M.
,
2009
, “
Passivation and Oxygen Ion Implantation Double Surface Treatment on Porous NiTi Shape Memory Alloys and Its Ni Suppression Performance
,”
Surf. Coat. Technol.
,
204
(
1–2
), pp.
58
63
.
24.
Silva
,
M. M.
,
Pichon
,
L.
,
Drouet
,
M.
, and
Otubo
,
J.
,
2012
, “
Roughness Studies of NiTi Shape Memory Alloy Treated by Nitrogen Plasma Based Ion Implantation at High Temperatures
,”
Surf. Coat. Technol.
,
211
(
25
), pp.
209
212
.
25.
Xie
,
X.
,
Chen
,
C.
,
Luo
,
J.
, and
Xu
,
J.
,
2021
, “
The Microstructure and Tribological Properties of M50 Steel Surface After Titanium Ion Implantation
,”
Appl. Surf. Sci.
,
564
(
30
), p.
150349
.
26.
Tan
,
L.
, and
Crone
,
W. C.
,
2022
, “
Surface Characterization of NiTi Modified by Plasma Source Ion Implantation
,”
Act. Mater.
,
50
(
18
), pp.
4449
4460
.
27.
Tan
,
L.
,
Crone
,
W. C.
, and
Sridharan
,
K.
,
2002
, “
Fretting Wear Study of Surface Modified Ni–Ti Shape Memory Alloy
,”
J. Mater. Sci.: Mater. Med.
,
13
(
5
), pp.
501
508
.
28.
Tan
,
L.
,
Shaw
,
G.
,
Sridharan
,
K.
, and
Crone
,
W. C.
,
2005
, “
Effects of Oxygen ion Implantation on Wear Behavior of NiTi Shape Memory Alloy
,”
Mech. Mater.
,
37
(
10
), pp.
1059
1068
.
29.
Tan
,
L.
, and
Crone
,
W. C.
,
2005
, “
Effect of Methane Plasma Ion Implantation on Microstructure and Wear Resistance of NiTi Shape Memory Alloy
,”
Thin Solid Films
,
472
(
1–2
), pp.
282
290
.
30.
Levintant-Zayonts
,
N.
,
Kwiatkowski
,
L.
,
Świątek
,
Z.
, and
Brzozowska
,
J.
,
2017
, “
Local Pseudoelastic Behaviour and Surface Characteristics of N Ion Implanted NiTi Shape Memory Alloy
,”
Acta Phys. Pol. A
,
132
(
2
), pp.
210
216
.
31.
Liu
,
X.
,
Wu
,
S.
,
Chan
,
Y. L.
,
Chu
,
K. P.
,
Chung
,
C. Y.
,
Chu
,
C. L.
,
Yeung
,
K. W. K.
,
Lu
,
W. W.
,
Cheung
,
K. M. C.
, and
Lu
,
K. D. K.
,
2007
, “
Structure and Wear Properties of NiTi Modified by Nitrogen Plasma Immersion Ion Implantation
”,
Mater. Sci. Eng. A
,
444
(
1–2
), pp.
192
197
.
32.
Zhao
,
T. T.
,
Li
,
Y.
,
Xiang
,
Y.
,
Zhao
,
X. Q.
, and
Zhang
,
T.
,
2011
, “
Surface Characteristics, Nano-Indentation and Corrosion Behavior of Nb Implanted NiTi Alloy
,”
Surf. Coat. Technol.
,
205
(
19
), p.
4404
.
33.
Zhao
,
T. T.
,
Li
,
Y.
,
Xiang
,
Y.
,
Zhao
,
X. Q.
, and
Zhang
,
T.
,
2014
, “
Enhanced Wear Resistance of NiTi Alloy by Surface Modification With Nb Ion Implantation
,”
Rare Met.
,
33
(
3
), pp.
244
248
.
34.
Zhao
,
T.
,
Li
,
Y.
,
Liu
,
Y.
, and
Zhao
,
X.
,
2012
, “
Nano-Hardness, Wear Resistance and Pseudoelasticity of Hafnium Implanted NiTi Shape Memory Alloy
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
174
184
.
35.
Levintant-Zayonts
,
N.
,
Starzyński
,
G.
,
Kopec
,
M.
, and
Kucharski
,
S.
,
2019
, “
Characterization of NiTi SMA in Its Unusual Behaviour in Wear Test
,”
Tribol. Int.
,
137
, pp.
313
323
.
36.
Czeppe
,
T.
,
Levintant-Zayonts
,
N.
,
Swiatek
,
Z.
,
Michalec
,
M.
,
Bonchyk
,
O.
, and
Savitskij
,
G.
,
2009
, “
Inhomogenous Structure of Near-Surface Layers in the Ion Implanted NiTi Alloy
,”
Vacuum
,
83
(
1
), pp.
S214
S219
.
37.
Levintant-Zayonts
,
N.
,
Starzyński
,
G.
, and
Kucharski
,
S.
,
2022
, “
Effect of N Ion Implantation on Tribological Properties of Spring Steels
,”
Appl. Surf. Sci.
,
591
(
30
), p.
153117
.
38.
Levintant-Zayonts
,
N.
,
Starzyński
,
G.
, and
Kucharski
,
S.
,
2021
, “
On the Origin of Superiority in Wear Response of Superelastic NiTi Compared to Conventional Ti6Al4V
,”
Tribol. Trans.
,
64
(
2
), pp.
287
301
.
39.
Velkavrh
,
I.
,
Ausserer
,
F.
,
Klien
,
S.
,
Voyer
,
J.
,
Ristow
,
A.
,
Brenner
,
J.
,
Foret
,
P.
, and
Diem
,
A.
,
2016
, “
The Influence of Temperature on Friction and Wear of Unlubricated, Steel/Steel Contacts in Different Gaseous Atmospheres
,”
Tribol. Int.
,
98
, pp.
155
171
.
You do not currently have access to this content.