Abstract

The study presents the classification of bearing fault types occurring in rotating machines using machine learning techniques. Recent condition monitoring demands all-inclusive but precise fault diagnosis for industrial machines. The utilization of mathematical modeling with machine learning may be combined for fine fault diagnosis under different working conditions. The current study presents a blend of dimensional analysis (DA) and a K-nearest neighbor (KNN) to diagnose faults in industrial roller bearings. Vibrational responses are collected for several industrial machines under diverse operational conditions. Bearing faults are identified using the DA model with 3.62% error (avg) and classified using KNN with 98.67% accuracy. Comparing the performance of models with experimental and artificial neural networks (ANN) validated the potential of the current approach. The results showed that the KNN demonstrates superior performance in terms of feature prediction and extraction of industrial bearing.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Behzad
,
M.
,
Bastami
,
A. R.
, and
Mba
,
D.
,
2011
, “
A New Model for Estimating Vibrations Generated in the Defective Rolling Element Bearings
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041011
.
2.
Wu
,
H.
,
Zhou
,
Q.
,
Zhang
,
Z.
, and
An
,
Q.
,
2012
, “
Vibration Analysis on the Rolling Element Bearing-Rotor System of an Air Blower
,”
J. Mech. Sci. Technol.
,
26
(
3
), pp.
653
659
.
3.
Ban
,
J.-E.
,
Rho
,
B.-H.
, and
Kim
,
K.-W.
,
2007
, “
A Study on the Sound of Roller Bearings Operating Under Radial Load
,”
Tribol. Int.
,
40
(
1
), pp.
21
28
.
4.
Patil
,
M. S.
,
Mathew
,
J.
, and
RajendraKumar
,
P. K.
,
2007
, “
Bearing Signature Analysis as a Medium for Fault Detection: A Review
,”
ASME J. Tribol.
,
130
(
1
), p.
014001
.
5.
Stacke
,
L.-E.
, and
Fritzson
,
D.
,
2001
, “
Dynamic Behaviour of Rolling Bearings: Simulations and Experiments
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
215
(
6
), pp.
499
508
.
6.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
126
(
4
), pp.
681
689
.
7.
Houpert
,
L.
,
2009
, “
CAGEDYN: A Contribution to Roller Bearing Dynamic Calculations Part I: Basic Tribology Concepts
,”
Tribol. Trans.
,
53
(
1
), pp.
1
9
.
8.
Nakhaeinejad
,
M.
, and
Bryant
,
M. D.
,
2010
, “
Dynamic Modeling of Rolling Element Bearings With Surface Contact Defects Using Bond Graphs
,”
ASME J. Tribol.
,
133
(
1
), p.
011102
.
9.
Zhenhuan
,
Y.
, and
Liqin
,
W.
,
2015
, “
Effect of External Loads on Cage Stability of High-Speed Ball Bearings
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
11
), pp.
1300
1318
.
10.
Vishwendra
,
M. A.
,
Salunkhe
,
P. S.
,
Patil
,
S. V.
,
Shinde
,
S. A.
,
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N.
,
2022
, “
A Novel Method to Classify Rolling Element Bearing Faults Using K-Nearest Neighbor Machine Learning Algorithm
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
8
(
3
), p.
031202
.
11.
Patil
,
V. R.
, and
Jadhav
,
P. V.
,
2020
, “
Dynamic Response Analysis of Unbalanced Rotor-Bearing System With Internal Radial Clearance
,”
SN Appl. Sci.
,
2
(
11
), pp.
1826
.
12.
Desavale
,
R. G.
,
2019
, “
Dynamics Characteristics and Diagnosis of a Rotor-Bearing's System Through a Dimensional Analysis Approach: An Experimental Study
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
1
), p.
014501
.
13.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
14.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.
15.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2022
, “
Vibration Analysis of Deep Groove Ball Bearing Using Finite Element Analysis and Dimension Analysis
,”
ASME J. Tribol.
,
144
(
8
), p.
081202
.
16.
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Dharwadkar
,
N. V.
,
2021
, “
Fault Size Diagnosis of Rolling Element Bearing Using Artificial Neural Network and Dimension Theory
,”
Neural Comput. Appl.
,
33
(
1
), pp.
16079
16093
.
17.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
,
2021
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neurofuzzy Inference System
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
7
(
1
), p.
011001
.
18.
Kumbhar
,
S. G.
, and
Sudhagar
,
P. E.
,
2020
, “
Model Development to Predict Vibration Response of Roller Bearings Considering the Material and Thermal Parameters Using Dimension Theory
,”
AIP Conf. Proc.
,
2270
(
1
), p.
040003
.
19.
Kumbhar
,
S. G.
, and
Sudhagar
,
P. E.
,
2020
, “
“Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
ASME J. Nondestr. Eval., Diagn. Progn. Eng. Syst.
,
4
(
1
), p.
011001
.
20.
Jadhav
,
P. M.
,
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Patil
,
S. B.
,
2020
, “
Distributed Fault Diagnosis of Rotor-Bearing System Using Dimensional Analysis and Experimental Methods
,”
Measurement
,
166
(
1
), pp.
108239
.
21.
Kumbhar
,
S. G.
, and
Sudhagar
,
P. E.
,
2020
, “
An Integrated Approach of Adaptive Neuro-Fuzzy Inference System and Dimension Theory for Diagnosis of Rolling Element Bearing
,”
Measurement
,
166
(
1
), pp.
108266
.
22.
Kumbhar
,
S. G.
,
Sudhagar
,
P. E.
, and
Desavale
,
R.
,
2020
, “
An Overview of Dynamic Modeling of Rolling-Element Bearings
,”
Noise Vib. Worldw.
,
52
(
1–2
), pp.
3
18
.
23.
Kumbhar
,
S. G.
,
Sudhagar
,
P. E.
, and
Desavale
,
R. G.
,
2020
, “
Theoretical and Experimental Studies to Predict Vibration Responses of Defects in Spherical Roller Bearings Using Dimension Theory
,”
Measurement
,
161
(
1
), p.
107846
.
24.
Liu
,
C.
,
Cheng
,
G.
,
Liu
,
B.
, and
Chen
,
X.
,
2020
, “
Bearing Fault Diagnosis Method With Unknown Variable Speed Based on Multi-Curve Extraction and Selection
,”
Measurement
,
153
(
1
), p.
107437
.
25.
Kordestani
,
M.
,
Rezamand
,
M.
,
Carriveau
,
R.
,
Ting
,
D. S. K.
, and
Saif
,
M.
,
2019
, “
Failure Diagnosis of Wind Turbine Bearing Using Feature Extraction and a Neuro-Fuzzy Inference System (ANFIS)
,”
Adv. Comput. Intell.
,
11506
(
1
), pp.
545
556
.
26.
Mojtaba Kordestani
,
S.
,
Orchard
,
M.
,
Roozbeh Razavi-Far
,
M. E.
, and
Khorasani
,
K.
,
2021
, “
Failure Prognosis and Applications—A Survey of Recent Literature
,”
IEEE Trans. Reliab.
,
70
(
2
), pp.
728
748
.
27.
He
,
M.
, and
He
,
D.
,
2019
, “
A New Hybrid Deep Signal Processing Approach for Bearing Fault Diagnosis Using Vibration Signals
,”
Neurocomputing
,
396
(
2
), pp.
542
555
.
28.
Prasetyo
,
E.
,
Purbaningtyas
,
R.
, and
Adityo
,
R.
,
2020
, “
Cosine K-Nearest Neighbor in Milkfish Eye Classification
,”
Int. J. Intell. Eng. Syst.
,
13
(
3
), pp.
11
25
.
29.
Vishwendra
,
M. A.
,
Salunkhe
,
P. S.
,
Patil
,
S. V.
,
Shinde
,
S. A.
,
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N. V.
,
2022
, “
A Novel Method to Classify Rolling Element Bearing Faults Using K-Nearest Neighbor Machine Learning Algorithm
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
8
(
3
), pp.
031202
.
30.
Shinde
,
P. V.
, and
Desavale
,
R. G.
,
2022
, “
Application of Dimension Analysis and Soft Competitive Tool to Predict Compound Faults Present in Rotor-Bearing Systems
,”
Measurement
,
193
(
2
), p.
110984
.
31.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Jagadeesha
,
T.
,
2021
, “
Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
7
(
2
), p.
021001
.
32.
Suryawanshi
,
G. L.
,
Patil
,
S. K.
, and
Desavale
,
R. G.
,
2021
, “
Dynamic Model to Predict Vibration Characteristics of Rolling Element Bearings With Inclined Surface Fault
,”
Measurement
,
184
(
3
), p.
109879
.
33.
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Sawant
,
S. H.
,
2023
, “
A Multi Fault Classification in a Rotor-Bearing System Using Machine Learning Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
2
), pp.
121
.
34.
Suryawanshi
,
G. L.
,
Patil
,
S. K.
, and
Desavale
,
R. G.
,
2023
, “
Empirical-Based DA and ANN to Diagnose Misalignment in Rotor-Bearing System
,”
Nondestr. Test. Eval.
,
38
(
4
), pp.
1
26
.
35.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
,
Khot
,
S. M.
, and
Yelve
,
N. P.
,
2024
, “
Identification of Bearing Clearance in Sugar Centrifuge Using Dimension Theory and Support Vector Machine on Vibration Measurement
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
7
(
2
), p.
021003
.
36.
Salunkhe
,
V. G.
, and
Desavale
,
R. G.
,
2021
, “
An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using a Machine Learning Model
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
4
(
3
), p.
031004
.
You do not currently have access to this content.