Abstract

Air foil thrust bearings provide some advantages over oil-lubricated thrust bearings. The use of these bearings reduces weight and increases dynamic stability, making it possible to reach high rotational speeds. However, as the bearing reaches high rotational speeds, the higher amount of heat generated results in reduced efficiency, deterioration, and even failure of the rotating machinery system. To overcome this, better thermal management is needed for air foil thrust bearings. Addressing this challenge, this study proposes the use of a chevron pattern at the trailing edge of the top foil to enhance air stream mixing, thus influencing heat dissipation. The main purpose of this study is to identify the optimal design parameters of the top foil trailing edge shape and provide a guideline for future air foil thrust bearing design. In this regard, 3D computational fluid dynamics (CFD) simulations are conducted to evaluate an air thrust foil bearing model performance. The highest temperature value occurring in the fluid and load-carrying capacity is selected as the output to find optimum design values. The design of experiments (DOE) technique is utilized for generating the sample points. A surrogate model is then used jointly with a multi-objective optimization to minimize the peak temperature in the air film and increase the load-carrying capacity. The optimal configuration is compared with the baseline, which is also used to validate the computational model with experimental data. This optimal design approach using a surrogate model can be used for further studies on improving the efficiency of air foil thrust bearings.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Branagan
,
M.
,
Griffin
,
D.
,
Goyne
,
C.
, and
Untaroiu
,
A.
,
2016
, “
Compliant Gas Foil Bearings and Analysis Tools
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
054001
.
2.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas Lubricated Compliant Thrust Bearings
,”
ASME J. Lubr. Tech.
,
105
(
4
), pp.
638
646
.
3.
Iordanoff
,
I.
,
1998
, “
Maximum Load Capacity Profiles for Gas Thrust Bearings Working Under High Compressibility Number Conditions
,”
ASME J. Tribol.
,
120
(
3
), pp.
571
576
.
4.
Heshmat
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
,
2000
, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
,
122
(
1
), pp.
199
204
.
5.
Dickman
,
J. R.
,
2010
, “
An Investigation of Gas Foil Thrust Bearing Performance and its Influencing Factors
,” Master’s Thesis, Case Western Reserve University, Cleveland, OH.
6.
Stahl
,
B. J.
,
2012
, “
Thermal Stability and Performance of Foil Thrust Bearings
,” M.S. Thesis, Case Western Reserve University, Cleveland, OH.
7.
Dykas
,
B. D.
,
2006
, “
Factors Influencing the Performance of Foil Gas Thrust Bearings for Oil-Free Turbomachinery Applications
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
8.
Dykas
,
B.
,
Bruckner
,
R.
,
DellaCorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2009
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
.
9.
Bruckner
,
R. J.
,
2012
,
Bruckner R. J., 2012, “Performance of Simple Gas Foil Thrust Bearings in Air,” NASA/TM—2012- 217262.
.
10.
Gao
,
Q.
,
Sun
,
W.
, and
Zhang
,
J.
,
2023
, “
A Comparative Study on Inflow Schemes of Radial Throughflow Cooling for Thermal Management of a Specific Multi-Layer Gas Foil Thrust Bearing
,”
Int. J. Heat Mass Transfer
,
216
, p.
124564
.
11.
Andrés
,
S.
,
Ryu
,
L.
, and
and Diemer
,
K.
,
2015
, “
Prediction of Gas Thrust Foil Bearing Performance for Oil-Free Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032502
.
12.
Kim
,
T. H.
,
Park
,
M.
, and
Lee
,
T. W.
,
2017
, “
Design Optimization of Gas Foil Thrust Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
139
(
3
), p.
031705
.
13.
San Andrés
,
L.
,
Ryu
,
K.
, and
Kim
,
T. H.
,
2011
, “
Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System—Part II: Predictions Versus Test Data
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
062502
.
14.
Zhao
,
Z.
,
Feng
,
K.
,
Zhao
,
X.
, and
Liu
,
W.
,
2018
, “
Identification of Dynamic Characteristics of Hybrid Bump-Metal Mesh Foil Bearings
,”
ASME J. Tribol.
,
140
(
5
), p.
051702
.
15.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Design and Performance Prediction of Hybrid Air Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042501
.
16.
LaTray
,
N.
,
Kim
,
D.
, and
Song
,
M.
,
2021
, “
Static Performance of a Hydrostatic Thrust Foil Bearing for Large Scale Oil-Free Turbomachines
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041017
.
17.
LaTray
,
N.
, and
Kim
,
D.
,
2021
, “
Novel Thrust Foil Bearing With Pocket Grooves for Enhanced Static Performance
,”
ASME J. Tribol.
,
143
(
11
), p.
111803
.
18.
Yu
,
Y.
,
Pu
,
G.
,
Jiang
,
T.
, and
Jiang
,
K.
,
2021
, “
Optimization of Herringbone Grooved Thrust Air Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
143
(
12
), p.
121805
.
19.
Li
,
C.
,
Du
,
J.
,
Li
,
J.
,
Xu
,
Z.
, and
Zhao
,
C.
,
2023
, “
Investigations on the Load Capacity of Multilayer Foil Thrust Bearing Based on an Updated Complete Model
,”
ASME J. Tribol.
,
145
(
2
), p.
21202
.
20.
Hu
,
N.
,
Jia
,
H.
,
Yin
,
B.
,
Zhou
,
Z.
, and
Xu
,
B.
,
2023
, “
Prediction of Static Characteristics of Hydrodynamic Air Foil Bearing Considering Contact and Friction Between Foils
,”
ASME J. Tribol.
,
145
(
9
), p.
094501
.
21.
Cao
,
Y.
,
Fan
,
J.
,
Zhang
,
H.
,
Guan
,
H.
, and
Feng
,
K.
,
2024
, “
Thermohydrodynamic Analysis of a Controllable Stiffness Foil Bearing With Shape Memory Alloy Springs: Experimental Tests and Theoretical Predictions
,”
ASME J. Tribol.
,
146
(
3
), p.
034102
.
22.
Zhuang
,
H.
,
Ding
,
J.
,
Chen
,
P.
,
Chang
,
Y.
,
Zeng
,
X.
, and
Liu
,
X.
,
2022
, “
An Improved Dynamic Modeling Approach of Aerostatic Thrust Bearing Considering Frequency-Varying Stiffness and Damping of Air Film
,”
ASME J. Tribol.
,
144
(
8
), p.
081806
.
23.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
,
46
(
3
), pp.
397
403
.
24.
Fu
,
G.
, and
Untaroiu
,
A.
,
2018
, “
The Influence of Surface Patterning on the Thermal Properties of Textured Thrust Bearings
,”
ASME J. Tribol.
,
140
(
6
), p.
061706
.
25.
Yildiz
,
S.
, and
Untaroiu
,
A.
,
2023
, “
Performance Investigation of Fluid-Lubricated Thrust Bearings With Varying Textured Pad Surfaces Using Computational Fluid Dynamics
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 20–23
.
26.
Yildiz
,
S.
, and
Untaroiu
,
A.
,
2023
, “
Investigation of Annular Gas Seal Performance With Combined Cavity Patterns Using Computational Fluid Dynamics
,”
ASME International Mechanical Engineering Congress and Exposition
,
New Orleans, LA
,
Oct. 29–Nov. 2
.
27.
Costa
,
H. L.
, and
Hutchings
,
I. M.
,
2007
, “
Hydrodynamic Lubrication of Textured Steel Surfaces Under Reciprocating Sliding Conditions
,”
Tribol. Int.
,
40
(
8
), pp.
1227
1238
.
28.
Qiu
,
M.
,
Delic
,
A.
, and
Raeymaekers
,
B.
,
2012
, “
The Effect of Texture Shape on the Load-Carrying Capacity of Gas-Lubricated Parallel Slider Bearings
,”
Tribol. Lett.
,
48
(
3
), pp.
315
327
.
29.
Fouflias
,
D. G.
,
Charitopoulos
,
A. G.
,
Papadopoulos
,
C. I.
,
Kaiktsis
,
L.
, and
Fillon
,
M.
,
2015
, “
Performance Comparison Between Textured, Pocket, and Tapered-Land Sector-Pad Thrust Bearings Using Computational Fluid Dynamics Thermohydrodynamic Analysis
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
4
), pp.
376
397
.
30.
dos Anjos
,
L. F.
,
Jaramillo
,
A. P.
,
Buscaglia
,
G. C.
, and
Nicoletti
,
R.
,
2023
, “
Improving the Load Capacity of Journal Bearings With Chevron Textures on the Shaft Surface
,”
Tribol. Int.
,
185
, p.
108561
.
31.
Schnell
,
G.
,
Studemund
,
H.
,
Thomas
,
R.
, and
Seitz
,
H.
,
2023
, “
Experimental Investigations on the Friction Behavior of Partially Femtosecond Laser-Textured Journal Bearing Shells
,”
Tribol. Int.
,
188
, p.
108764
.
32.
Vladescu
,
S.-C.
,
Olver
,
A. V.
,
Pegg
,
I. G.
, and
Reddyhoff
,
T.
,
2015
, “
The Effects of Surface Texture in Reciprocating Contacts—An Experimental Study
,”
Tribol. Int.
,
82
, pp.
28
42
.
33.
Pawlus
,
P.
,
Reizer
,
R.
, and
Wieczorowski
,
M.
,
2021
, “
Functional Importance of Surface Texture Parameters
,”
Materials (Basel)
,
14
(
18
), p.
5326
.
34.
Bruckner
,
R.
,
2013
, “
The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing
,”
World Tribology Congress
,
Torino, Italy
,
Sept. 8–13
.
35.
Untaroiu
,
A.
, and
Fu
,
G.
,
2019
, “
Surrogate Model Based Optimization for Chevron Foil Thrust Bearing
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
.
You do not currently have access to this content.