Abstract

The eccentric errors of planetary roller screw mechanism (PRSM) affect the contact kinematic characteristics and exacerbate the cumulative wear of thread pairs, which will reduce its transmission accuracy and reliability. Hence, it is significant to investigate the cumulative wear of PRSM with the eccentric errors. In this work, based on the conjugate surface contact condition and Archard wear theory, the sliding speed and cumulative wear depth of PRSM with eccentricity errors are modeled, respectively. The effects of eccentric errors on the sliding velocities and cumulative wear depth of PRSM are investigated. It has been determined that the eccentric errors of the screw and nut do not cause the sliding motion in the nut–roller contact region (NRCR). However, there are noticeable variations in sliding velocity and cumulative wear depth in the screw–roller contact region (SRCR). The eccentric errors of the screw and nut have a combined effect on the sliding velocity and wear between the screw and roller. This investigation and finding can provide a valuable reference for the processing and assembly of PRSM.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Hu
,
R.
,
Wei
,
P. T.
,
Liu
,
H. J.
,
Du
,
X. S.
,
Zhou
,
P. L.
, and
Zhu
,
C. C.
,
2023
, “
Investigation on Load Distribution Among Rollers of Planetary Roller Screw Mechanism Considering Machining Errors: Analytical Calculation and Machine Learning Approach
,”
Mech. Mach. Theory
,
185
, p.
105322
.
2.
Xu
,
H. W.
,
Wei
,
P. T.
,
Du
,
X. S.
,
Hu
,
R.
,
Liu
,
H. J.
,
Kang
,
X. H.
, and
Zhu
,
C. C.
,
2023
, “
A Study of Precision Grinding of Micro-pitch Internal Thread for Planetary Roller Screw Mechanism
,”
J. Manuf. Process
,
106
, pp.
35
50
.
3.
Lepagneul
,
J.
,
Tadrist
,
L.
,
Sprauel
,
J. M.
, and
Linares
,
J. M.
,
2022
, “
Fatigue Lifespan of a Planetary Roller-Screw Mechanism
,”
Mech. Mach. Theory
,
172
, p.
104769
.
4.
Guadagno
,
M. C.
,
Loss
,
J. M.
, and
Pearce
,
J. M.
,
2021
, “
Open Source 3D-Printable Planetary Roller Screw for Food Processing Applications
,”
Technologies
,
9
(
2
), pp.
24
26
.
5.
Li
,
L. J.
,
Fu
,
Y. L.
,
Zheng
,
S. C.
,
Fu
,
J.
, and
Xia
,
T. X.
,
2020
, “
Friction Torque Analysis of Planetary Roller Screw Mechanism in Roller Jamming
,”
Math. Probl. Eng.
,
2020
, p.
1392380
.
6.
Wang
,
C.
,
Zhang
,
C. X.
,
Cheng
,
Q.
,
Zhang
,
T.
,
Shi
,
W.
, and
Xue
,
D. Y.
,
2023
, “
Kinematic Modeling of a Planetary Roller Screw Mechanism Considering Runout Errors and Elastic Deformation
,”
Int. J. Adv. Des. Manuf. Technol.
,
124
(
11–12
), pp.
4455
4463
.
7.
Zhou
,
C. G.
,
Wang
,
L. D.
,
Shen
,
J. W.
,
Chen
,
C. H.
,
Ou
,
Y.
, and
Feng
,
H. T.
,
2022
, “
Wear Characterization of Raceway Surface Profiles of Ball Screws
,”
ASME J. Tribol.
,
144
(
11
), p.
111701
.
8.
Aurégan
,
G.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Rodrigues
,
F.
,
2015
, “
Experimental Simulation of Rolling-Sliding Contact for Application to Planetary Roller Screw Mechanism
,”
Wear
,
332
, pp.
1176
1184
.
9.
Aurégan
,
G.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Rodrigues
,
F.
,
2016
, “
Wear Behavior of Martensitic Stainless Steel in Rolling-Sliding Contact for Planetary Roller Screw Mechanism: Study of the WC/C Solution
,”
Tribol. Online
,
11
(
2
), pp.
209
217
.
10.
Meng
,
J. J.
,
Du
,
X.
,
Li
,
Y. M.
,
Chen
,
P.
,
Xia
,
F. C.
, and
Wan
,
L.
,
2021
, “
A Multiscale Accuracy Degradation Prediction Method of Planetary Roller Screw Mechanism Based on Fractal Theory Considering Thread Surface Roughness
,”
Fractal Fractional
,
5
(
4
), p.
237
.
11.
Meng
,
J. J.
,
Du
,
X.
,
Zhao
,
X.
,
Zheng
,
J. W.
,
Wang
,
D. W.
, and
Wan
,
L.
,
2022
, “
Research on Contact and Wear Characteristics of the Planetary Roller Screw Mechanism With Screw Misalignments
,”
Lubricants
,
10
(
6
), p.
115
.
12.
Du
,
X.
,
Chen
,
B. K.
,
Liu
,
R. R.
, and
Li
,
C. Y.
,
2022
, “
Research on Fractal Model of Load Distribution and Axial Stiffness of Planetary Roller Screw Mechanism Considering Surface Roughness and Friction Factor
,”
Adv. Theory Simul.
,
5
(
4
), p.
2100399
.
13.
Miao
,
J. C.
,
Du
,
X.
,
Li
,
C. Y.
, and
Chen
,
B. K.
,
2024
, “
Improved Wear Profile Modeling of Planetary Roller Screw Mechanism With Thread Optimization
,”
ASME J. Tribol.
,
146
(
3
), p.
031701
.
14.
Xing
,
M. C.
,
Zhang
,
B. H.
,
Deng
,
P.
,
Xu
,
J. Q.
, and
Cui
,
Y.
,
2022
, “
A Novel Wear Prediction Model for Planetary Roller Screw Based on Universal Sliding Distance Model
,”
Tribol. Int.
,
175
, p.
107851
.
15.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2013
, “
Contact Kinematics in the Roller Screw Mechanism
,”
J. Mech. Des.
,
135
(
5
), p.
051003
.
16.
Liu
,
Y. Q.
,
Wang
,
J. S.
,
Cheng
,
H. X.
, and
Sun
,
Y. P.
,
2015
, “
Kinematics Analysis of the Roller Screw Based on the Accuracy of Meshing Point Calculation
,”
Math. Probl. Eng.
,
2015
, p.
303972
.
17.
Zhang
,
X. H.
,
Huo
,
X. J.
,
Huang
,
J.
,
Duan
,
X. S.
, and
Wang
,
G.
,
2019
, “
Kinematics Modeling and Pitch Diameter Modification of the Standard Planetary Roller Screw Mechanism
,”
Proceedings of 2019 22nd International Conference on Electrical Machines and Systems (ICEMS)
,
Harbin, China
,
Aug. 11–14
, pp.
1
6
.
18.
Jones
,
M. H.
,
Velinsky
,
S. A.
, and
Lasky
,
T. A.
,
2015
, “
Dynamics of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
014503
.
19.
Fu
,
X. J.
,
Liu
,
G.
,
Li
,
X.
,
Ma
,
S. J.
, and
Qiao
,
G.
,
2021
, “
Dynamic Modeling of the Double-Nut Planetary Roller Screw Mechanism Considering Elastic Deformations
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
5
), p.
051003
.
20.
Qiao
,
G.
,
Liao
,
R.
,
Guo
,
S.
,
Shi
,
Z. H.
, and
Ma
,
S. J.
,
2022
, “
Design and Dynamic Analysis of the Recirculating Planetary Roller Screw Mechanism
,”
Chin. J. Mech. Eng.
,
35
(
1
), p.
87
.
21.
Zu
,
L.
,
Zhang
,
Z.
, and
Gao
,
L.
,
2018
, “
Design and Bearing Characteristics of Planetary Roller Screws Based on Aerospace High-Load Conditions
,”
Adv. Mech. Eng.
,
10
(
11
), p.
1687814018811197
.
22.
Ni
,
J. N.
,
Yin
,
J. H.
,
Li
,
D. D.
,
Liu
,
J. Q.
, and
Xie
,
Z. J.
,
2021
, “
Modeling of Contact Load Distribution of Planetary Threaded Roller Bearing Based on Deformation Coordination
,”
Mech. Based Des. Struct. Mach.
,
51
(
10
), pp.
5856
5877
.
23.
Xiao
,
Y. L.
,
Fu
,
J.
,
Zhao
,
Y. S.
,
Li
,
F. P.
, and
Chen
,
K.
,
2023
, “
Multi-objective Optimization of Planetary Roller Screw Mechanism Based on Improved Boundary Condition
,”
Int. J. Adv. Manuf. Technol.
,
124
(
11–12
), pp.
4479
4491
.
24.
Yao
,
Q.
,
Zhang
,
M. C.
,
Ma
,
S. J.
, and
Jiang
,
Q. S.
,
2023
, “
Study on Multi-level Progressive Optimization of Planetary Roller Screw Mechanism
,”
Tribol. Int.
,
189
, p.
109008
.
25.
Velinsky
,
S. A.
,
Chu
,
B.
, and
Lasky
,
T. A.
,
2009
, “
Kinematics and Efficiency Analysis of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011016
.
26.
Mamaev
,
I. M.
,
Morozov
,
V. V.
,
Fedotov
,
O. V.
, and
Filimonov
,
V. N.
,
2015
, “
Precision of a Roller Screw Actuator Transmission for a Radio Telescope
,”
Russ. Eng. Res.
,
35
(
12
), pp.
919
923
.
27.
Xie
,
Z. J.
,
Xue
,
Q. H.
,
Wu
,
J. Q.
,
Gu
,
L.
,
Wang
,
L. Q.
, and
Song
,
B. Y.
,
2019
, “
Mixed-lubrication Analysis of Planetary Roller Screw
,”
Tribol. Int.
,
140
, p.
105883
.
28.
Zhou
,
G. W.
,
Zhang
,
Y. H.
,
Wang
,
Z. Z.
, and
Pu
,
W.
,
2021
, “
Analysis of Transient Mixed Elastohydrodynamic Lubrication in Planetary Roller Screw Mechanism
,”
Tribol. Int.
,
163
, p.
107158
.
29.
Xing
,
M. C.
,
Zhang
,
B. H.
,
Liu
,
S.
,
Cui
,
Y.
,
Xu
,
J. Q.
, and
Deng
,
P.
,
2024
, “
Elastohydrodynamic Lubrication Analysis With Eccentric Errors for Planetary Roller Screw Mechanism
,”
Tribol. Int.
,
193
, p.
109362
.
30.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2012
, “
Kinematics of Roller Migration in the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061006
.
31.
Ma
,
S. J.
,
Zhang
,
T.
,
Liu
,
G.
,
Tong
,
R. T.
, and
Fu
,
X. J.
,
2015
, “
Kinematics of Planetary Roller Screw Mechanism Considering Helical Directions of Screw and Roller Threads
,”
Math. Probl. Eng.
,
2015
, p.
459462
.
32.
Fu
,
X. J.
,
Liu
,
G.
,
Ma
,
S. J.
,
Tong
,
R. T.
, and
Li
,
X.
,
2020
, “
An Efficient Method for the Dynamic Analysis of Planetary Roller Screw Mechanism
,”
Mech. Mach. Theory
,
150
, p.
103851
.
33.
Peng
,
B.
,
Luo
,
Y.
,
Niu
,
T.
,
Baddour
,
N.
,
Li
,
C. S.
, and
Luo
,
Y. X.
,
2023
, “
Straightening of the Rollers of Planetary Roller Screw—Design of Straightening Die and Experimental Validation
,”
J. Manuf. Process
,
92
, pp.
42
62
.
34.
Ma
,
S. J.
,
Cai
,
W.
,
Wu
,
L. P.
,
Liu
,
G.
, and
Peng
,
C.
,
2019
, “
Modelling of Transmission Accuracy of a Planetary Roller Screw Mechanism Considering Errors and Elastic Deformations
,”
Mech. Mach. Theory
,
134
, pp.
151
168
.
35.
Yang
,
Z. C.
,
Zhang
,
Y.
,
Zhang
,
K.
, and
Li
,
S. H.
,
2021
, “
Wear Analysis of Angular Contact Ball Bearing in Multiple-Bearing Spindle System Subjected to Uncertain Initial Angular Misalignment
,”
ASME J. Tribol.
,
143
(
9
), p.
091703
.
36.
Xing
,
M. C.
,
Zhang
,
B. H.
,
Deng
,
P.
,
Xu
,
J. Q.
, and
Cui
,
Y.
,
2023
, “
A Comprehensive Analysis of Contact Kinematics for Planetary Roller Screw Mechanism
,”
Tribol. Int.
,
179
, p.
108127
.
37.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2021
, “
A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip
,”
ASME J. Tribol.
,
143
(
4
), p.
041502
.
38.
Deng
,
P.
,
Xing
,
M. C.
,
Lin
,
J. G.
,
Zhang
,
B. H.
, and
Cui
,
Y.
,
2023
, “
A Mathematical Model for Load Distribution of Planetary Roller Screw With Pitch Deviation
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
10
), p.
547
.
39.
Sandu
,
S.
,
Biboulet
,
N.
,
Nelias
,
D.
, and
Abevi
,
F.
,
2019
, “
Analytical Prediction of the Geometry of Contact Ellipses and Kinematics in a Roller Screw Versus Experimental Results
,”
Mech. Mach. Theory
,
131
, pp.
115
136
.
You do not currently have access to this content.