Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The influence of elements in steel on anode plasma electrolytic boriding has been studied. The modified layers and surfaces on steel samples were analyzed by a scanning electron microscope, an X-ray diffractometer, a surface profiler, a microhardness tester, and a ball-disc tribometer. With 1045 steel as the control group, the same treatment parameters (treatment with 5 min, 200 V of voltage, 5% boric acid, and 10% ammonium chloride) were implemented on various steel substrates. It was found that a low content of carbon would hinder the penetration of boron, and other metallic elements can improve the mircrohardness gradient and decrease the wear-rate. Chromium and manganese can increase the maximum microhardness than treated 1045 by about 15%, but have a detrimental effect on surface flatness. Nevertheless, manganese has the ability to rapidly create a layer of oxide that enhances the tribological characteristics, leading to a remarkably low average friction coefficient of 0.26 for 1046 steel. The presence of molybdenum in the element composition of 4140 steel results in a notable enhancement of surface properties, namely in terms of wear resistance, with a minimum wear-rate 2.1 × 10−6 g/Nm for 4140 steel. Nickel does not appear to have a notable impact on the surface characteristics of the modified samples.

References

1.
Marques
,
I. J.
,
Silva
,
F. J.
, and
Santos
,
T. F. A.
,
2020
, “
Rapid Precipitation of Intermetallic Phases During Isothermal Treatment of Duplex Stainless Steel Joints Produced by Friction Stir Welding
,”
J. Alloys Compd.
,
820
(
9
), p.
153170
.
2.
Kusmanov
,
S. A.
,
Smirnov
,
A. A.
,
Silkin
,
S. A.
, and
Belkin
,
P. N.
,
2016
, “
Increasing Wear and Corrosion Resistance of Low-Alloy Steel by Anode Plasma Electrolytic Nitriding
,”
Surf. Coat. Technol.
,
307
(
27
), pp.
1350
1356
.
3.
Çavuşlu
,
F.
, and
Usta
,
M.
,
2011
, “
Kinetics and Mechanical Study of Plasma Electrolytic Carburizing for Pure Iron
,”
Appl. Surf. Sci.
,
257
(
9
), pp.
4014
4020
.
4.
de Almeida
,
E. A. S.
,
Milan
,
J. C. G.
,
Costa
,
H. L.
,
Krelling
,
A. P.
, and
da Costa
,
C. E.
,
2018
, “
Sliding Wear of Borided Sintered AISI M2 Steel Coated With AlTiN/CrN Multilayer
,”
Wear
,
410–411
(
9
), pp.
11
24
.
5.
Wang
,
B.
,
Xue
,
W. B.
,
Wu
,
J.
,
Jin
,
X. Y.
,
Hua
,
M.
, and
Wu
,
Z. L.
,
2013
, “
Characterization of Surface Hardened Layers on Q235 Low-Carbon Steel Treated by Plasma Electrolytic Borocarburizing
,”
J. Alloys Compd.
,
578
(
34
), pp.
162
169
.
6.
Kulka
,
M.
,
Makuch
,
N.
, and
Pertek
,
A.
,
2013
, “
Microstructure and Properties of Laser-Borided 41Cr4 Steel
,”
Opt. Laser Technol.
,
45
(
1
), pp.
308
318
.
7.
López Perrusquia
,
N.
,
Doñu Ruiz
,
M. A.
,
García Bustos
,
E. D.
,
Lores Martínez
,
M.
,
Urriolagoitia Calderón
,
G. M.
, and
Torres San Miguel
,
C. R.
,
2020
, “
Duplex Surface Treatment on Microalloy Steels by Dehydrated Paste Pack Boriding and Pack Carburizing
,”
Mater. Lett.
,
280
(
23
), p.
128573
.
8.
Erdogan
,
A.
,
Kursuncu
,
B.
,
Günen
,
A.
,
Kalkandelen
,
M.
, and
Gok
,
M. S.
,
2020
, “
A New Approach to Sintering and Boriding of Steels ‘Boro-Sintering’: Formation, Microstructure and Wear Behaviors
,”
Surf. Coat. Technol.
,
386
(
24
), p.
125482
.
9.
Kusmanov
,
S. A.
,
Tambovskiy
,
I. V.
,
Naumov
,
A. R.
,
Dyakov
,
I. G.
, and
Belkin
,
P. N.
,
2015
, “
Anode Plasma Electrolytic Boronitrocarburising of Low-Carbon Steel
,”
Surf. Eng. Appl. Electrochem.
,
51
(
5
), pp.
462
467
.
10.
Shadrin
,
S. Y.
, and
Belkin
,
P. N.
,
2012
, “
Analysis of Models for Calculation of Temperature of Anode Plasma Electrolytic Heating
,”
ASME J. Heat Mass Transfer
,
55
(
1–3
), pp.
179
186
.
11.
Shadrin
,
S. Y.
,
Zhirov
,
A. V.
, and
Belkin
,
P. N.
,
2016
, “
Formation Regularities of Gaseous Vapour Plasma Envelope in Electrolyzer
,”
Surf. Eng. Appl. Electrochem.
,
52
(
1
), pp.
110
116
.
12.
Zhirov
,
A. V.
,
Belkin
,
P. N.
, and
Shadrin
,
S. Y.
,
2017
, “
Heat Transfer in the Anode Region in Plasma-Electrolytic Heating of a Cylindrical Sample
,”
J. Eng. Phys. Thermophys.
,
90
(
4
), pp.
862
872
.
13.
Béjar
,
M. A.
, and
Henríquez
,
R.
,
2009
, “
Surface Hardening of Steel by Plasma-Electrolysis Boronizing
,”
Mater. Des.
,
30
(
5
), pp.
1726
1728
.
14.
Kusmanov
,
S. A.
,
Tambovskiy
,
I. V.
,
Sevostyanova
,
V. S.
,
Savushkina
,
S. V.
, and
Belkin
,
P. N.
,
2016
, “
Anode Plasma Electrolytic Boriding of Medium Carbon Steel
,”
Surf. Coat. Technol.
,
291
(
7
), pp.
334
341
.
15.
Pertek
,
A.
,
1994
, “
Gas Boriding Conditions for the Iron Borides Layers Formation
,”
Mater. Sci. Forum
,
163–165
(
6
), pp.
323
328
. www.scientific.net/MSF.163-165.323
16.
Liliental
,
W.
, and
Tacikowski
,
J.
,
1980
, “
Einfluß Der Wärmebehandlung Auf Die Sprödigkeit von Boridschichten Auf Stählen
,”
HTM J. Heat Treat. Mater.
,
35
(
5
), pp.
251
256
.
17.
Pertek
,
A.
, and
Kulka
,
M.
,
2003
, “
Two-Step Treatment Carburizing Followed by Boriding on Medium-Carbon Steel
,”
Surf. Coat. Technol.
,
173
(
2–3
), pp.
309
314
.
18.
Kulka
,
M.
, and
Pertek
,
A.
,
2003
, “
The Importance of Carbon Content Beneath Iron Borides After Boriding of Chromium and Nickel-Based Low-Carbon Steel
,”
Appl. Surf. Sci.
,
214
(
1–4
), pp.
161
171
.
19.
Kulka
,
M.
, and
Pertek
,
A.
,
2003
, “
Characterization of Complex (B + C + N) Diffusion Layers Formed on Chromium and Nickel-Based Low-Carbon Steel
,”
Appl. Surf. Sci.
,
218
(
1–4
), pp.
114
123
.
20.
Wang
,
B.
,
Xue
,
W. B.
,
Jin
,
X. Y.
,
Zhang
,
Y. F.
,
Wu
,
Z. L.
, and
Li
,
Y. L.
,
2019
, “
Combined Treatment Plasma Electrolytic Carburizing and Borocarburizing on Q235 Low-Carbon Steel
,”
Mater. Chem. Phys.
,
221
(
1
), pp.
232
238
.
You do not currently have access to this content.