Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The constant growth of the aerospace industry has been made possible due to the development and implementation of materials capable of withstanding the service demands of different components. Inconel 718 alloy presents high mechanical resistance, high hardness, tendency to undergo work hardening, and low thermal conductivity, which makes it difficult to machine material. Developing techniques that improve these alloys' machinability are fundamental and, therefore, have been a point of interest and study. Within these techniques is the use of coated tools, which allow the evaluation of optimization and improvement of the milling process's performance and produce parts with superior surface quality. This is the case of TiAlVN and TiAlN/TiAlVN coatings. Based on this, the main goal of this work was to evaluate the properties and wear behavior of TiAlVN and TiAlN/TiAlVN coated tools coated, deposited by the physical vapor deposition (PVD) process, during the milling of Inconel 718. Indeed, TiAlN coatings doped with vanadium have been little studied and explored, opening a gap in the literature. The coatings produced were analyzed in terms of their composition, morphology, mechanical properties, oxidation resistance, and wear resistance. The parameters that were compared were cutting length and feed per tooth. Both coatings had a stoichiometric chemical composition and a similar morphology. It was observed that the TiAlN/TiAlVN coating had better performance in oxidation tests, and TiAlVN coating had better performance in wear resistance. The wear mechanisms identified were similar in all tools, with the main wear mechanism being abrasive wear with some adhesive wear.

References

1.
Gouveia
,
R. M.
,
Silva
,
F. J. G.
,
Reis
,
P.
, and
Baptista
,
A. P. M.
,
2016
, “
Machining Duplex Stainless Steel: Comparative Study Regarding End Mill Coated Tools
,”
Coatings
,
6
(
4
), p.
51
.
2.
Paturi
,
U. M. R.
,
Vidhya Darshini
,
B.
, and
Reddy
,
N. S.
,
2021
, “
Progress of Machinability on the Machining of Inconel 718: A Comprehensive Review on the Perception of Cleaner Machining
,”
Clean. Eng. Technol.
,
5
, p.
100323
.
3.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Sousa
,
V. F. C.
,
Sales-Contini
,
R. C. M.
,
Campilho
,
R. D. S. G.
, and
Pedroso
,
A. F. V.
,
2023
, “Wear Behavior Analysis of TiN/TiAlN Coated Tools in Milling of Inconel 718,”
Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems. FAIM 2023
,
F. J. G.
Silva
,
A. B.
Pereira
, and
R. D. S. G.
Campilho
, eds.,
Springer
,
Cham
, pp.
784
795
, Lecture Notes in Mechanical Engineering.
4.
Tillmann
,
W.
,
Momeni
,
S.
, and
Hoffmann
,
F.
,
2013
, “
A Study of Mechanical and Tribological Properties of Self-lubricating TiAlVN Coatings at Elevated Temperatures
,”
Tribol. Int.
,
66
, pp.
324
329
.
5.
Çomaklı
,
O.
,
2021
, “
Improved Structural, Mechanical, Corrosion and Tribocorrosion Properties of Ti45Nb Alloys by TiN, TiAlN Monolayers, and TiAlN/TiN Multilayer Ceramic Films
,”
Ceram. Int.
,
47
(
3
), pp.
4149
4156
.
6.
Fukumoto
,
N.
,
Ezura
,
H.
, and
Suzuki
,
T.
,
2009
, “
Synthesis and Oxidation Resistance of TiAlSiN and Multilayer TiAlSiN/CrAlN Coating
,”
Surf. Coat. Technol.
,
204
(
6–7
), pp.
902
906
.
7.
Mahesh
,
K.
,
Philip
,
J. T.
,
Joshi
,
S. N.
, and
Kuriachen
,
B.
,
2021
, “
Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures
,”
Mater. Manuf. Process.
,
36
(
7
), pp.
753
791
.
8.
Yin
,
Q.
,
Liu
,
Z.
, and
Wang
,
B.
,
2021
, “
Machinability Improvement of Inconel 718 Through Mechanochemical and Heat Transfer Effects of Coated Surface-Active Thermal Conductive Mediums
,”
J. Alloys Compd.
,
876
, p.
160186
.
9.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2022
, “
Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review
,”
Metals
,
12
(
11
), p.
1874
.
10.
Hong
,
S. J.
,
Chen
,
W. P.
, and
Wang
,
T. W.
,
2001
, “
A Diffraction Study of the γ″ Phase in INCONEL 718 Superalloy
,”
Metall. Mater. Trans. A
,
32
(
8
), pp.
1887
1901
.
11.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-Art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
.
12.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Jawahir
,
I. S.
, and
Biermann
,
D.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
13.
Buddaraju
,
K. M.
,
Sastry
,
G. R. K.
, and
Kosaraju
,
S.
,
2021
, “
A Review on Turning of Inconel Alloys
,”
Mater. Today: Proc.
,
44
, pp.
2645
2652
.
14.
Hosseini
,
E.
, and
Popovich
,
V. A.
,
2019
, “
A Review of Mechanical Properties of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
30
, p.
100877
.
15.
Sousa
,
V. F. C.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Costa
,
R. D. F. S.
,
Sebbe
,
N.
, and
Sales-Contini
,
R. C. M.
,
2023
, “
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
,”
Metals
,
13
(
4
), p.
684
.
16.
Toubhans
,
B.
,
Fromentin
,
G.
,
Viprey
,
F.
,
Karaouni
,
H.
, and
Darlin
,
T.
,
2020
, “
Machinability of Inconel 718 During Turning: Cutting Force Model Considering Tool Wear, Influence on Surface Integrity
,”
J. Mater. Process. Technol.
,
285
, p.
116809
.
17.
Agmell
,
M.
,
Bushlya
,
V.
,
M'Saoubi
,
R.
,
Gutnichenko
,
O.
,
Zaporozhets
,
O.
,
Laakso
,
S. V. A.
, and
Ståhl
,
J.-E.
,
2020
, “
Investigation of Mechanical and Thermal Loads in pcBN Tooling During Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3–4
), pp.
1451
1462
.
18.
Polvorosa
,
R.
,
Suárez
,
A.
,
de Lacalle
,
L. N. L.
,
Cerrillo
,
I.
,
Wretland
,
A.
, and
Veiga
,
F.
,
2017
, “
Tool Wear on Nickel Alloys With Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy
,”
J. Manuf. Process.
,
26
, pp.
44
56
.
19.
Cantero
,
J. L.
,
Díaz-Álvarez
,
J.
,
Infante-García
,
D.
,
Rodriguez
,
M.
, and
Criado
,
V.
,
2019
, “
High Speed Finish Turning of Inconel 718 Using PCBN Tools Under Dry Conditions
,”
Metals
,
8
(
3
), p.
192
.
20.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vignau
,
J.
,
2004
, “
A Review of Developments Towards Dry and High-Speed Machining of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
439
456
.
21.
Zhao
,
X.
,
Qin
,
H.
, and
Feng
,
Z.
,
2021
, “
Influence of Tool Edge Form Factor and Cutting Parameters on Milling Performance
,”
Adv. Mech. Eng.
,
13
(
4
), p.
168781402110090
.
22.
Selvaraj
,
P.
,
Radhakrishnan
,
P.
, and
Adithan
,
M.
,
2009
, “
An Integrated Approach to Design for Manufacturing and Assembly Based on Reduction of Product Development Time and Cost
,”
Int. J. Adv. Manuf. Technol.
,
42
(
1–2
), pp.
13
29
.
23.
Pinheiro
,
C.
,
Kondo
,
M. Y.
,
Amaral
,
S. S.
,
Callisaya
,
E. S.
,
de Souza
,
J. V. C.
, and
Alves
,
M. C. S.
,
2021
, “
Effect of Machining Parameters on Turning Process of Inconel 718
,”
Mater. Manuf. Process.
,
36
(
12
), pp.
1421
1437
.
24.
Ji
,
W.
,
Zou
,
B.
,
Zhang
,
S.
,
Xing
,
H.
,
Yun
,
H.
, and
Wang
,
Y.
,
2018
, “
Design and Fabrication of Gradient Cermet Composite Cutting Tool, and Its Cutting Performance
,”
J. Alloys Compd.
,
732
, pp.
25
31
.
25.
Baptista
,
A.
,
Silva
,
F.
,
Porteiro
,
J.
,
Míguez
,
J.
, and
Pinto
,
G.
,
2018
, “
Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands
,”
Coatings
,
8
(
11
), p.
402
.
26.
Sousa
,
V. F. C.
,
Silva
,
F. J. G.
,
Pinto
,
G. F.
,
Baptista
,
A.
, and
Alexandre
,
R.
,
2021
, “
Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review
,”
Metals
,
11
(
2
), p.
260
.
27.
Mattox
,
D. M.
,
2003
, “Deposition Processes,”
The Foundations of Vacuum Coating Technology
,
Springer
,
Berlin
, pp.
11
33
.
28.
Abdullah
,
M. Z. B.
,
Ahmad
,
M. A.
,
Abdullah
,
A. N.
,
Othman
,
M. H.
,
Hussain
,
P.
, and
Zainuddin
,
A.
,
2016
, “
Metal Release of Multilayer Coatings By Physical Vapour Deposition (PVD)
,”
Procedia Eng.
,
148
, pp.
254
260
.
29.
Jeyachandran
,
Y. L.
,
Narayandass
,
S. K.
,
Mangalaraj
,
D.
,
Areva
,
S.
, and
Mielczarski
,
J. A.
,
2007
, “
Properties of Titanium Nitride Films Prepared by Direct Current Magnetron Sputtering
,”
Mater. Sci. Eng. A
,
445–446
, pp.
223
236
.
30.
Zhu
,
H.
,
Zhang
,
J.
,
Li
,
C.
,
Pan
,
F.
,
Wang
,
T.
, and
Huang
,
B.
,
2009
, “
Cu2O Thin Films Deposited by Reactive Direct Current Magnetron Sputtering
,”
Thin Solid Films
,
517
(
19
), pp.
5700
5704
.
31.
Yeh
,
T.-S.
,
Wu
,
J.-M.
, and
Hu
,
L.-J.
,
2008
, “
The Properties of TiN Thin Films Deposited by Pulsed Direct Current Magnetron Sputtering
,”
Thin Solid Films
,
516
(
21
), pp.
7294
7298
.
32.
Caliskan
,
H.
,
Panjan
,
P.
, and
Kurbanoglu
,
C.
,
2016
, “Hard Coatings on Cutting Tools and Surface Finish,”
Comprehensive Materials Finishing
,
M. S. J.
Hashmi
, ed.,
Elsevier
,
Oxford
, pp.
230
242
.
33.
Geng
,
Z.
,
Shi
,
G.
,
Shao
,
T.
,
Liu
,
Y.
,
Duan
,
D.
, and
Reddyhoff
,
T.
,
2019
, “
Tribological Behavior of Patterned TiAlN Coatings at Elevated Temperatures
,”
Surf. Coat. Technol.
,
364
, pp.
99
114
.
34.
Chang
,
Y.-Y.
, and
Lai
,
H.-M.
,
2014
, “
Wear Behavior and Cutting Performance of CrAlSiN and TiAlSiN Hard Coatings on Cemented Carbide Cutting Tools for Ti Alloys
,”
Surf. Coat. Technol.
,
259
, pp.
152
158
.
35.
Yang
,
K.
,
Xian
,
G.
,
Zhao
,
H.
,
Fan
,
H.
,
Wang
,
J.
,
Wang
,
H.
, and
Du
,
H.
,
2015
, “
Effect of Mo Content on the Structure and Mechanical Properties of TiAlMoN Films Deposited on WC-Co Cemented Carbide Substrate by Magnetron Sputtering
,”
Int. J. Refract. Met. Hard Mater.
,
52
, pp.
29
35
.
36.
Aninat
,
R.
,
Valle
,
N.
,
Chemin
,
J.-B.
,
Duday
,
D.
,
Michotte
,
C.
,
Penov
,
M.
,
Bourgeois
,
L.
, and
Choquet
,
P.
,
2019
, “
Addition of Ta and Y in a Hard Ti-Al-N PVD Coating: Individual and Conjugated Effect on the Oxidation and Wear Properties
,”
Corros. Sci.
,
156
, pp.
171
180
.
37.
Pfeiler-Deutschmann
,
M.
,
Mayrhofer
,
P. H.
,
Chladil
,
K.
,
Penoy
,
M.
,
Michotte
,
C.
,
Kathrein
,
M.
, and
Mitterer
,
C.
,
2015
, “
Effect of Wavelength Modulation of Arc Evaporated Ti–Al–N/Ti–Al–V–N Multilayer Coatings on Microstructure and Mechanical/Tribological Properties
,”
Thin Solid Films
,
581
, pp.
20
24
.
38.
Xu
,
Y. X.
,
Chen
,
L.
,
Pei
,
F.
,
Yue
,
J. L.
, and
Du
,
Y.
,
2018
, “
Thermal Stability and Oxidation Resistance of V-Alloyed TiAlN Coatings
,”
Ceram. Int.
,
44
(
2
), pp.
1705
1710
.
39.
Zhang
,
J.
,
Chen
,
L.
, and
Kong
,
Y.
,
2022
, “
The Microstructural, Mechanical and Thermal Properties of TiAlVN, TiAlSiN Monolithic and TiAlVN/TiAlSiN Multilayered Coatings
,”
J. Alloys Compd.
,
899
, p.
163332
.
40.
Zheng
,
J.
,
Zhang
,
Y.
, and
Qiao
,
H.
,
2023
, “
Milling Mechanism and Chattering Stability of Nickel-Based Superalloy Inconel 718
,”
Materials
,
16
(
17
), p.
5748
.
41.
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2020
, “
Recent Advances on Coated Milling Tool Technology—A Comprehensive Review
,”
Coatings
,
10
(
3
), p.
235
.
42.
Ducroux
,
E.
,
Fromentin
,
G.
,
Viprey
,
F.
,
Prat
,
D.
, and
D’Acunto
,
A.
,
2021
, “
New Mechanistic Cutting Force Model for Milling Additive Manufactured Inconel 718 Considering Effects of Tool Wear Evolution and Actual Tool Geometry
,”
J. Manuf. Process.
,
64
, pp.
67
80
.
43.
ISO 4288:1996
,
1996
,
Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture
,
International Organization for Standardization
,
Geneva
.
44.
ISO 8688-2:1986
,
1986
,
Tool Life Testing in Milling—Part 2: End Milling
,
International Organization for Standardization
,
Geneva
.
45.
Eguchi
,
N.
,
Grajewski
,
V.
,
Uchida
,
H. H.
, and
Fromm
,
E.
,
1991
, “
Sputter Cleaning of Iron Substrates and Contamination of TiN Coatings Studied By In Situ Auger Electron Spectroscopy Measurements in an Ultrahigh Vacuum Physical Vapour Deposition Apparatus
,”
Mater. Sci. Eng. A
,
139
, pp.
339
344
.
46.
Mauer
,
G.
, and
Vaßen
,
R.
,
2020
, “
Coatings With Columnar Microstructures for Thermal Barrier Applications
,”
Adv. Eng. Mater.
,
22
(
6
), p.
1900988
.
47.
Vereschaka
,
A.
,
Kataeva
,
E.
,
Sitnikov
,
N.
,
Aksenenko
,
A.
,
Oganyan
,
G.
, and
Sotova
,
C.
,
2018
, “
Influence of Thickness of Multilayered Nano-structured Coatings Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrCrNbAl)N on Tool Life of Metal Cutting Tools at Various Cutting Speeds
,”
Coatings
,
8
(
1
), p.
44
.
48.
Bouzakis
,
K.-D.
,
Hadjiyiannis
,
S.
,
Skordaris
,
G.
,
Anastopoulos
,
J.
,
Mirisidis
,
I.
,
Michailidis
,
N.
,
Efstathiou
,
K.
, et al.
,
2003
, “
The Influence of the Coating Thickness on Its Strength Properties and on the Milling Performance of PVD Coated Inserts
,”
Surf. Coat. Technol.
,
174–175
, pp.
393
401
.
49.
Wang
,
C.
,
Ou
,
S.
, and
Chiou
,
S.
,
2014
, “
Microstructures of TiN, TiAlN and TiAlVN Coatings on AISI M2 Steel Deposited by Magnetron Reactive Sputtering
,”
Trans. Nonferrous Met. Soc. China
,
24
(
8
), pp.
2559
2565
.
50.
Engwall
,
A. M.
,
Rao
,
Z.
, and
Chason
,
E.
,
2016
, “
Origins of Residual Stress in Thin Films: Interaction Between Microstructure and Growth Kinetics
,”
Mater. Des.
,
110
, pp.
616
623
.
51.
Aliofkhazraei
,
M.
,
Walsh
,
F. C.
,
Zangari
,
G.
,
Köçkar
,
H.
,
Alper
,
M.
,
Rizal
,
C.
,
Magagnin
,
L.
, and
Protsenko
,
V.
,
2021
, “
Development of Electrodeposited Multilayer Coatings: A Review of Fabrication, Microstructure, Properties and Applications
,”
Appl. Surf. Sci. Adv.
,
6
, p.
100141
.
52.
Pfeiler
,
M.
,
Kutschej
,
K.
,
Penoy
,
M.
,
Michotte
,
C.
,
Mitterer
,
C.
, and
Kathrein
,
M.
,
2009
, “
The Effect of Increasing V Content on Structure, Mechanical and Tribological Properties of Arc Evaporated Ti–Al–V–N Coatings
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
2
), pp.
502
506
.
53.
Kathrein
,
M.
,
Michotte
,
C.
,
Penoy
,
M.
,
Polcik
,
P.
, and
Mitterer
,
C.
,
2005
, “
Multifunctional Multi-component PVD Coatings for Cutting Tools
,”
Surf. Coat. Technol.
,
200
(
5–6
), pp.
1867
1871
.
54.
Zalnezhad
,
E.
,
Sarhan
,
A. A. D.
, and
Hamdi
,
M.
,
2013
, “
Optimising the PVD TiN Thin Film Coating's Parameters on Aerospace AL7075-T6 Alloy for Higher Coating Hardness and Adhesion With Better Tribological Properties of the Coating Surface
,”
Int. J. Adv. Manuf. Technol.
,
64
(
1–4
), pp.
281
290
.
55.
Ni
,
W.
,
Cheng
,
Y.-T.
,
Lukitsch
,
M. J.
, and
Weiner
,
A. M.
,
2004
, “
Effects of the Ratio of Hardness to Young's Modulus on the Friction and Wear Behavior of Bilayer Coatings
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4028
4030
.
56.
Beake
,
B. D.
,
2022
, “
The Influence of the H/E Ratio on Wear Resistance of Coating Systems—Insights From Small-Scale Testing
,”
Surf. Coat. Technol.
,
442
, p.
128272
.
57.
Buj-Corral
,
I.
,
Vivancos-Calvet
,
J.
, and
Domínguez-Fernández
,
A.
,
2012
, “
Surface Topography in Ball-End Milling Processes as a Function of Feed Per Tooth and Radial Depth of Cut
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
151
159
.
58.
Marakini
,
V.
,
Pai
,
S. P.
,
Bhat
,
U. K.
, and
Thakur
,
D. G.
,
2022
, “
High-Speed Face Milling of AZ91 Mg Alloy: Surface Integrity Investigations
,”
Int. J. Lightweight Mater. Manuf.
,
5
(
4
), pp.
528
542
.
59.
Airao
,
J.
,
Chaudhary
,
B.
,
Bajpai
,
V.
, and
Khanna
,
N.
,
2018
, “
An Experimental Study of Surface Roughness Variation in End Milling of Super Duplex 2507 Stainless Steel
,”
Mater. Today: Proc.
,
5
(
2
), pp.
3682
3689
.
60.
Čep
,
R.
,
Sadílek
,
M.
, and
Petru
,
J.
,
2013
, “
Surface Roughness After Machining and Influence of Feed Rate on Process
,”
Key Eng. Mater.
,
581
, pp.
342
347
.
61.
Gassner
,
G.
,
Mayrhofer
,
P. H.
,
Kutschej
,
K.
, and
Mitterer
,
C.
,
2004
, “
A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings
,”
Tribol. Lett.
,
17
(
4
), pp.
751
756
.
62.
Dašić
,
M.
,
Ponomarev
,
I.
,
Polcar
,
T.
, and
Nicolini
,
P.
,
2022
, “
Tribological Properties of Vanadium Oxides Investigated With Reactive Molecular Dynamics
,”
Tribol. Int.
,
175
, p.
107795
.
63.
Klünsner
,
T.
,
Shen
,
Q.
,
Hlawacek
,
G.
,
Teichert
,
C.
,
Fateh
,
N.
,
Fontalvo
,
G. A.
, and
Mitterer
,
C.
,
2010
, “
Morphology Characterisation and Friction Coefficient Determination of Sputtered V2O5 Films
,”
Thin Solid Films
,
519
(
4
), pp.
1416
1420
.
64.
Dai
,
W.
,
Lee
,
K.
,
Sinyukov
,
A. M.
, and
Liang
,
H.
,
2017
, “
Effects of Vanadium Oxide Nanoparticles on Friction and Wear Reduction
,”
ASME J. Tribol.
,
139
(
6
), p.
061607
.
65.
Liang
,
X.
, and
Liu
,
Z.
,
2018
, “
Tool Wear Behaviors and Corresponding Machined Surface Topography During High-Speed Machining of Ti–6Al–4V With Fine Grain Tools
,”
Tribol. Int.
,
121
, pp.
321
332
.
66.
Ezugwu
,
E. O.
,
2005
, “
Key Improvements in the Machining of Difficult-to-Cut Aerospace Superalloys
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1353
1367
.
67.
Ostrowicki
,
N.
,
Kaim
,
A.
,
Gross
,
D.
, and
Hanenkamp
,
N.
,
2021
, “
Effect of Various Cooling Lubricant Strategies on Turning Inconel 718 With Different Cutting Materials
,”
Procedia CIRP
,
101
, pp.
350
353
.
68.
Gueli
,
M.
,
Ma
,
J.
,
Cococcetta
,
N.
,
Pearl
,
D.
, and
Jahan
,
M. P.
,
2021
, “
Experimental Investigation Into Tool Wear, Cutting Forces, and Resulting Surface Finish During Dry and Flood Coolant Slot Milling of Inconel 718
,”
Procedia Manuf.
,
53
, pp.
236
245
.
69.
Dhananchezian
,
M.
, and
Rajkumar
,
K.
,
2020
, “
Comparative Study of Cutting Insert Wear and Roughness Parameter (Ra) While Turning Nimonic 90 and Hastelloy C-276 By Coated Carbide Inserts
,”
Mater. Today: Proc.
,
22
, pp.
1409
1416
.
70.
Zimmermann
,
R.
,
Welling
,
D.
,
Venek
,
T.
,
Ganser
,
P.
, and
Bergs
,
T.
,
2021
, “
Tool Wear Progression of SiAlON Ceramic End Mills in Five-Axis High-Feed Rough Machining of an Inconel 718 BLISK
,”
Procedia CIRP
,
101
, pp.
13
16
.
71.
Zhang
,
G.
,
Zhang
,
J.
,
Fan
,
G.
,
Xu
,
C.
, and
Du
,
J.
,
2023
, “
The Effect of Chip Formation on the Cutting Force and Tool Wear in High-Speed Milling Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
127
(
1–2
), pp.
335
348
.
72.
Rahman
,
M. A.
,
Bhuiyan
,
M. S.
,
Sharma
,
S.
,
Kamal
,
M. S.
,
Imtiaz
,
M. M. M.
,
Alfaify
,
J. A.
,
Nguyen
,
T.-T.
, et al
,
2021
, “
Influence of Feed Rate Response (FRR) on Chip Formation in Micro and Macro Machining of Al Alloy
,”
Metals
,
11
(
1
), p.
159
.
73.
Zhou
,
J.
,
Bushlya
,
V.
,
Avdovic
,
P.
, and
Ståhl
,
J. E.
,
2012
, “
Study of Surface Quality in High-Speed Turning of Inconel 718 With Uncoated and Coated CBN Tools
,”
Int. J. Adv. Manuf. Technol.
,
2012
(
58
), pp.
141
151
.
74.
Pereira
,
O.
,
Celaya
,
A.
,
Urbikaín
,
G.
,
Rodríguez
,
A.
,
Fernández-Valdivielso
,
A.
, and
de Lacalle
,
L. N. L.
,
2020
, “
CO2 Cryogenic Milling of Inconel 718: Cutting Forces and Tool Wear
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8459
8468
.
75.
Kursuncu
,
B.
,
Caliskan
,
H.
,
Guven
,
S. Y.
, and
Panjan
,
P.
,
2017
, “
Wear Behavior of Multilayer Nanocomposite TiAlSiN/TiSiN/TiAlN Coated Carbide Cutting Tool During Face Milling of Inconel 718 Superalloy
,”
J. Nano Res.
,
47
, pp.
11
16
.
76.
Bhatt
,
A.
,
Attia
,
H.
,
Vargas
,
R.
, and
Thomson
,
V.
,
2010
, “
Wear Mechanisms of WC Coated and Uncoated Tools in Finish Turning of Inconel 718
,”
Tribol. Int.
,
43
(
5–6
), pp.
1113
1121
.
77.
Khlifi
,
K.
, and
Larbi
,
A. B. C.
,
2014
, “
Mechanical Properties and Adhesion of TiN Monolayer and TiN/TiAlN Nanolayer Coatings
,”
J. Adhes. Sci. Technol.
,
28
(
1
), pp.
85
96
.
78.
Li
,
J.
,
Zheng
,
H.
,
Sinkovits
,
T.
,
Hee
,
A. C.
, and
Zhao
,
Y.
,
2015
, “
Mono- and Multiple TiN(/Ti) Coating Adhesion Mechanism on a Ti–13Nb–13Zr Alloy
,”
Appl. Surf. Sci.
,
355
, pp.
502
508
.
79.
Silva
,
F. J. G.
,
Fernandes
,
A. J. S.
,
Costa
,
F. M.
,
Baptista
,
A. P. M.
, and
Pereira
,
E.
,
2004
, “
A New Interlayer Approach for CVD Diamond Coating of Steel Substrates
,”
Diam Relat. Mater.
,
13
(
4–8
), pp.
828
833
.
80.
Grzesik
,
W.
,
2017
, “Tool Wear and Damage,”
Advanced Machining Processes of Metallic Materials
, 2nd ed.,
W.
Grzesik
, ed.,
Elsevier
,
New York
, pp.
215
239
.
81.
Çelik
,
A.
,
Alağaç
,
M. S.
,
Turan
,
S.
,
Kara
,
A.
, and
Kara
,
F.
,
2017
, “
Wear Behavior of Solid SiAlON Milling Tools During High Speed Milling of Inconel 718
,”
Wear
,
378–379
, pp.
58
67
.
You do not currently have access to this content.