Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To enhance the reliability of the double-row cylindrical roller bearing (DCRB), a new quasi-static model, which is capable of considering inner ring misalignment and combined loads, has been established. This model was used to calculate the distribution of internal loads and contact pressure. First, the model was verified with published data. Second, systematic parameter analyses were conducted to investigate how axial load, inner ring misalignment, and roller profile influence contact performance. The results indicate that when the bearing is subjected to a combined load, the difference between the radial loads borne by the two rows increases with the increase of axial load. The combined load and misalignment of the inner ring would cause significant changes in the numerical value and distribution of contact load and pressure between the rollers and raceways. The roller profile optimization can reduce contact pressure and alleviate the edge effect.

References

1.
Bercea
,
I.
,
Cretu
,
S.
, and
Nélias
,
D.
,
2003
, “
Analysis of Double-Row Tapered Roller Bearings, Part I—Model
,”
Tribol. Trans.
,
46
(
2
), pp.
228
239
.
2.
Nélias
,
D.
,
Bercea
,
I.
, and
Mitu
,
N.
,
2003
, “
Analysis of Double-Row Tapered Roller Bearings, Part II—Results: Prediction of Fatigue Life and Heat Dissipation
,”
Tribol. Trans.
,
46
(
2
), pp.
240
247
.
3.
Ai
,
S. Y.
,
Wang
,
W. Z.
,
Wang
,
Y. L.
, and
Zhao
,
Z. Q.
,
2015
, “
Temperature Rise of Double-Row Tapered Roller Bearings Analyzed With the Thermal Network Method
,”
Tribol. Int.
,
87
, pp.
11
22
.
4.
Yan
,
K.
,
Wang
,
N.
,
Zhai
,
Q.
,
Zhu
,
Y. S.
,
Zhang
,
J. H.
, and
Niu
,
Q. B.
,
2015
, “
Theoretical and Experimental Investigation on the Thermal Characteristics of Double-Row Tapered Roller Bearings of High Speed Locomotive
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1119
1130
.
5.
Yang
,
L. H.
,
Xu
,
T. F.
,
Xu
,
H. L.
, and
Wu
,
Y.
,
2018
, “
Mechanical Behavior of Double-Row Tapered Roller Bearing Under Combined External Loads and Angular Misalignment
,”
Int. J. Mech. Sci.
,
142
, pp.
561
574
.
6.
Wu
,
Z. H.
,
Xu
,
Y. Q.
, and
Liu
,
K. A.
,
2020
, “
Study on Logarithmic Crowning of Tapered Roller Profile Considering Angular Misalignment
,”
ASME J. Tribol.
,
142
(
11
), p.
111201
.
7.
Zheng
,
J.
,
Ji
,
J.
,
Yin
,
S.
, and
Tong
,
V. C.
,
2020
, “
Internal Loads and Contact Pressure Distributions on the Main Shaft Bearing in a Modern Gearless Wind Turbine
,”
Tribol. Int.
,
141
, p.
105960
.
8.
Harris
,
T. A.
,
1971
, “
The Endurance of a Thrust-Loaded, Double Row Radial Cylindrical Roller Bearing
,”
Wear
,
18
(
6
), pp.
429
438
.
9.
Tong
,
V. C.
, and
Hong
,
S. W.
,
2017
, “
Modeling and Analysis of Double-Row Cylindrical Roller Bearings
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3379
3388
.
10.
Chudzik
,
A.
, and
Warda
,
B.
,
2021
, “
The Use of FEM to Evaluate the Influence of Logarithmic Correction Parameters of Roller Generators on the Axle Box Bearing Life
,”
Mech. Mech. Eng.
,
25
(
1
), pp.
53
61
.
11.
Liu
,
J.
,
Fancheng
,
W.
,
Li
,
X. B.
, and
Ding
,
S. Z.
,
2023
, “
A Vibration Model of a Flexible Rotor-Bearing System Considering the Defect in a Double-Row Cylindrical Roller Bearing
,”
Proc. Inst. Mech. Eng., Part K
,
237
(
3
), pp.
478
493
.
12.
Harris
,
T. A.
,
1969
, “
The Effect of Misalignment on the Fatigue Life of Cylindrical Roller Bearings Having Crowned Rolling Members
,”
ASME J. Tribol.
,
91
(
2
), pp.
294
300
.
13.
Kabus
,
S.
,
Hansen
,
M.
, and
Mouritsen
,
O.
,
2012
, “
A New Quasi-Static Cylindrical Roller Bearing Model to Accurately Consider Non-Hertzian Contact Pressure in Time Domain Simulations
,”
ASME J. Tribol.
,
134
(
4
), p.
041401
.
14.
Liu
,
J. Y.
,
1971
, “
The Effect of Misalignment on the Life of High Speed Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
93
(
1
), pp.
60
68
.
15.
Duan
,
H.
,
Song
,
J.
, and
Wang
,
Z.
,
2020
, “
Lubrication and Fatigue Life Evaluation of High-Speed Cylindrical Roller Bearing Under Misalignment
,”
Math. Probl. Eng.
,
2020
, pp.
1
11
.
16.
de Mul
,
J. M.
,
Vree
,
J. M.
, and
Maas
,
D. A.
,
1989
, “
Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction—Part I: General Theory and Application to Ball Bearings
,”
ASME J. Tribol.
,
111
(
1
), pp.
142
148
.
17.
Tong
,
V. C.
, and
Hong
,
S. W.
,
2022
, “
Stiffness Characteristics of Crossed Roller Bearings With Roller Roundness Deformation
,”
ASME J. Tribol.
,
144
(
2
), p.
021201
.
18.
Chudzik
,
A.
, and
Warda
,
B.
,
2020
, “
Fatigue Life Prediction of a Radial Cylindrical Roller Bearing Subjected to a Combined Load Using FEM
,”
Maint. Reliab.
,
22
(
2
), pp.
212
220
.
19.
Bayrak
,
R.
, and
Sagirli
,
A.
,
2023
, “
Effect of Different Roller End-Flange Constructions on the Fatigue Life of the Cylindrical Roller Bearings: A Novel Flange Deformation Formula
,”
EKSPLOAT NIEZAWODN.
,
25
(
4
), p.
174296
.
20.
Bayrak
,
R.
, and
Sagirli
,
A.
,
2023
, “
Fatigue Life Analysis of the Radial Cylindrical Roller Bearings: Roller End-Flange Construction Effect
,”
Mech. Based Des. Struct. Mach.
,
51
(
12
), pp.
7030
7055
.
21.
Wang
,
Z.
,
Song
,
J.
,
Li
,
X.
, and
Yu
,
Q.
,
2022
, “
Modeling and Dynamic Analysis of Cylindrical Roller Bearings Under Combined Radial and Axial Loads
,”
ASME J. Tribol.
,
144
(
12
), p.
121203
.
22.
Liu
,
J.
,
Xu
,
Z.
, and
An
,
C.
,
2023
, “
An Analysis of the Load Distribution Characteristics of a Cylindrical Roller Bearing Including the Component Deformation and Waviness
,”
ASME J. Tribol.
,
145
(
2
), p.
021201
.
23.
Liu
,
J.
, and
Xu
,
Z. D.
,
2022
, “
An Optimization Design Method of a Cylindrical Roller Bearing With the Low Friction Torque
,”
ASME J. Tribol.
,
144
(
11
), p.
111201
.
24.
Sumith
,
S.
, and
Gupta
,
A.
,
2022
, “
Design and Parametric Study of Flexible Ball Bearings: A Finite Element Approach
,”
Mater. Today Proc.
,
56
(
1
), pp.
257
262
.
25.
Shafiee
,
A.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Wilmer
,
M. G.
,
2022
, “
Analytical Investigation of Roller Skew and Tilt in a Spherical Roller Bearing
,”
ASME J. Tribol.
,
144
(
7
), p.
071201
.
26.
Rajeswara Rao
,
B.
, and
Tiwari
,
R.
,
2007
, “
Optimum Design of Rolling Element Bearings Using Genetic Algorithms
,”
Mech. Mach. Theory
,
42
(
2
), pp.
233
250
.
27.
Liu
,
J. Y.
,
1976
, “
Analysis of Tapered Roller Bearings Considering High Speed and Combined Loading
,”
ASME J. Tribol.
,
98
(
4
), pp.
564
572
.
28.
Nelias
,
D.
,
Bercea
,
I.
, and
Paleu
,
V.
,
2008
, “
Prediction of Roller Skewing in Tapered Roller Bearings
,”
Tribol. Trans.
,
51
(
2
), pp.
128
139
.
29.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
30.
Wang
,
Z.
,
Chen
,
X.
,
Shen
,
X.
, and
Zhou
,
L.
,
2019
, “
Optimum Design of the Roller Profile Based on the Elastohydrodynamic Lubrication Model
,”
Proc. Inst. Mech. Eng., Part J
,
233
(
10
), pp.
1594
1604
.
You do not currently have access to this content.