Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study explores the frictional dynamics in wire-on-V-groove contacts, particularly in slip rings, by examining the effects of contact geometry and loading stiffness. Our experimental setup, using three different custom tribometers, allowed precise control and measurement of these variables. Results show a significant deviation of the friction coefficient from traditional Amonton–Coulomb predictions, highlighting an increased sensitivity to the aforementioned factors. These findings challenge the conventional understanding of tribology, emphasizing the need for a refined theoretical model that better accounts for the complexities in V-groove contacts. The study's implications are far-reaching, particularly in improving the design and reliability of slip rings in high-precision instruments and satellite technologies.

References

1.
McNab
,
I. R.
,
1980
, “
Recent Advances in Electrical Current Collection
,”
Wear
,
59
(
1
), pp.
259
276
.
2.
Slade
,
P. G.
,
2017
,
Electrical Contacts: Principles and Applications
,
CRC Press
,
Boca Raton, FL
.
3.
Holm
,
R.
,
2013
,
Electric Contacts: Theory and Application
,
Springer Science & Business Media
,
Berlin
.
4.
Boyer
,
L.
,
Noel
,
S.
, and
Chabrerie
,
J. P.
,
1987
, “
Electrochemically Activated Wear of Metal Fibre Brushes
,”
Wear
,
116
(
1
), pp.
43
58
.
5.
Reichner
,
P.
,
1981
, “
High Current Tests of Metal Fiber Brushes
,”
IEEE Trans. Compon. Hybrid. Manuf. Technol.
,
4
(
1
), pp.
2
4
.
6.
Brown
,
L.
,
Kuhlmann-Wilsdorf
,
D.
, and
Jesser
,
W.
,
2008
, “
Testing and Evaluation of Metal Fiber Brush Operation on Slip Rings and Commutators
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
485
494
.
7.
Sawyer
,
W. G.
,
Argibay
,
N.
,
Burris
,
D. L.
, and
Krick
,
B. A.
,
2013
, “
Mechanistic Studies in Friction and Wear of Bulk Materials
,”
Annu. Rev. Mater. Res.
,
44
(
1
), pp.
395
427
.
8.
Argibay
,
N.
, and
Sawyer
,
W. G.
,
2012
, “
Low Wear Metal Sliding Electrical Contacts at High Current Density
,”
Wear
,
274
, pp.
229
237
.
9.
Halsey
,
T. C.
, and
Ertaş
,
D.
,
1999
, “
A Ball in a Groove
,”
Phys. Rev. Lett.
,
83
(
24
), pp.
5007
5010
.
10.
Schouten
,
C. H.
,
Rosielle
,
P. C. J. N.
, and
Schellekens
,
P. H. J.
,
1997
, “
Design of a Kinematic Coupling for Precision Applications
,”
Precis. Eng.
,
20
(
1
), pp.
46
52
.
11.
Popov
,
V. L.
,
2017
,
Contact Mechanics and Friction
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
12.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
13.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
14.
Sherif
,
H. A.
, and
Kossa
,
S. S.
,
1991
, “
Relationship Between Normal and Tangential Contact Stiffness of Nominally Flat Surfaces
,”
Wear
,
151
(
1
), pp.
49
62
.
15.
Krylov
,
S. Y.
, and
Frenken
,
J. W. M.
,
2014
, “
The Physics of Atomic-Scale Friction: Basic Considerations and Open Questions
,”
Phys. Status Solidi B
,
251
(
4
), pp.
711
736
.
16.
Park
,
J. S.
,
Lee
,
S. M.
,
Joo
,
B. S.
, and
Jang
,
H.
,
2017
, “
The Effect of Material Properties on the Stick–Slip Behavior of Polymers: A Case Study With PMMA, PC, PTFE, and PVC
,”
Wear
,
378–379
, pp.
11
16
.
17.
Fuadi
,
Z.
,
Maegawa
,
S.
,
Nakano
,
K.
, and
Adachi
,
K.
,
2010
, “
Map of Low-Frequency Stick–Slip of a Creep Groan
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
224
(
12
), pp.
1235
1246
.
18.
Nakano
,
K.
, and
Maegawa
,
S.
,
2009
, “
Stick-Slip in Sliding Systems With Tangential Contact Compliance
,”
Tribol. Int.
,
42
(
11–12
), pp.
1771
1780
.
19.
Berman
,
A. D.
,
Ducker
,
W. A.
, and
Israelachvili
,
J. N.
,
1996
, “
Origin and Characterization of Different Stick−Slip Friction Mechanisms
,”
Langmuir
,
12
(
19
), pp.
4559
4563
.
20.
Lee
,
S. M.
,
Shin
,
M. W.
,
Lee
,
W. K.
, and
Jang
,
H.
,
2013
, “
The Correlation Between Contact Stiffness and Stick–Slip of Brake Friction Materials
,”
Wear
,
302
(
1–2
), pp.
1414
1420
.
21.
Müller
,
B.
,
Berner
,
J.
,
Bechinger
,
C.
, and
Krüger
,
M.
,
2020
, “
Properties of a Nonlinear Bath: Experiments, Theory, and a Stochastic Prandtl–Tomlinson Model
,”
New J. Phys.
,
22
(
2
), p.
023014
.
22.
Kosaka
,
K.
,
Nishizawa
,
Y.
,
Kurita
,
Y.
, and
Oura
,
Y.
,
2011
, “Influence of Pad Surface Texture on Disc Brake Squeal,” p. 2011-01–2354.
23.
Sherif
,
H. A.
,
1991
, “
Effect of Contact Stiffness on the Establishment of Self-Excited Vibrations
,”
Wear
,
141
(
2
), pp.
227
234
.
24.
Rabinowicz
,
E.
, and
Tanner
,
R. I.
,
1966
, “
Friction and Wear of Materials
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
479
479
.
25.
Rabinowicz
,
E.
,
1995
,
Friction and Wear of Materials
,
Wiley
,
New York
.
26.
Prandtl
,
L.
,
1928
, “
Ein Gedankenmodell zur kinetischen Theorie der festen Körper
,”
Z. Angew. Math. Mech.
,
8
(
2
), pp.
85
106
.
27.
Tomlinson
,
G. A.
,
1929
, “
CVI. A Molecular Theory of Friction
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
7
(
46
), pp.
905
939
.
28.
Popov
,
V. L.
, and
Gray
,
J. A. T.
,
2012
, “
Prandtl-Tomlinson Model: History and Applications in Friction, Plasticity, and Nanotechnologies
,”
ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech.
,
92
(
9
), pp.
683
708
.
29.
Socoliuc
,
A.
,
Bennewitz
,
R.
,
Gnecco
,
E.
, and
Meyer
,
E.
,
2004
, “
Transition From Stick-Slip to Continuous Sliding in Atomic Friction: Entering a New Regime of Ultralow Friction
,”
Phys. Rev. Lett.
,
92
(
13
), p.
134301
.
30.
Braun
,
O. M.
,
Peyrard
,
M.
,
Bortolani
,
V.
,
Franchini
,
A.
, and
Vanossi
,
A.
,
2005
, “
Transition From Smooth Sliding to Stick-Slip Motion in a Single Frictional Contact
,”
Phys. Rev. E
,
72
(
5
), p.
056116
.
31.
Borovsky
,
B. P.
,
Garabedian
,
N. T.
,
McAndrews
,
G. R.
,
Wieser
,
R. J.
, and
Burris
,
D. L.
,
2019
, “
Integrated QCM-Microtribometry: Friction of Single-Crystal MoS2 and Gold From mm/s to m/s
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40961
40969
.
32.
Liu
,
H.
, and
Bhushan
,
B.
,
2003
, “
Adhesion and Friction Studies of Microelectromechanical Systems/Nanoelectromechanical Systems Materials Using a Novel Microtriboapparatus
,”
J. Vac. Sci. Technol. Vac. Surf. Films
,
21
(
4
), pp.
1528
1538
.
33.
Rennie
,
A. C.
,
Dickrell
,
P. L.
, and
Sawyer
,
W. G.
,
2005
, “
Friction Coefficient of Soft Contact Lenses: Measurements and Modeling
,”
Tribol. Lett.
,
18
(
4
), pp.
499
504
.
34.
Dickrell
,
P. L.
,
Sinnott
,
S. B.
,
Hahn
,
D. W.
,
Raravikar
,
N. R.
,
Schadler
,
L. S.
,
Ajayan
,
P. M.
, and
Sawyer
,
W. G.
,
2005
, “
Frictional Anisotropy of Oriented Carbon Nanotube Surfaces
,”
Tribol. Lett.
,
18
(
1
), pp.
59
62
.
35.
Gao
,
T.
,
Zhang
,
K.
,
Wang
,
Y.
,
Liu
,
K.
,
Liu
,
X.
, and
Ye
,
J.
,
2023
, “
Contribution of Meniscus Force to Friction of Multi-Asperity Sliding Contact
,”
Tribol. Int.
,
177
, p.
107994
.
36.
Burris
,
D. L.
, and
Sawyer
,
W. G.
,
2009
, “
Addressing Practical Challenges of Low Friction Coefficient Measurements
,”
Tribol. Lett.
,
35
(
1
), pp.
17
23
.
37.
Poletto
,
J. C.
,
Neis
,
P. D.
,
Fauconnier
,
D.
,
Ramalho
,
A.
,
De Baets
,
P.
, and
Ferreira
,
N. F.
,
2024
, “
A Systematic Investigation of Grooving and Rolling Abrasive Mechanisms Using Surface Topography
,”
Wear
,
548–549
, p.
205389
.
38.
Wei
,
J.
,
Ren
,
J.
, and
Fu
,
H.
,
2022
, “
The Weakening of Inter-Particle Friction and Its Effect on Mechanical Behaviors of Granular Soils
,”
Comput. Geotech.
,
147
, p.
104764
.
39.
He
,
Z.
,
Dormieux
,
L.
,
Lemarchand
,
E.
, and
Kondo
,
D.
,
2013
, “
Cohesive Mohr–Coulomb Interface Effects on the Strength Criterion of Materials With Granular-Based Microstructure
,”
Eur. J. Mech. A Solids
,
42
, pp.
430
440
.
40.
Arshad
,
M.
,
Maali
,
A.
,
Claudet
,
C.
,
Lobry
,
L.
,
Peters
,
F.
, and
Lemaire
,
E.
,
2021
, “
An Experimental Study on the Role of Inter-Particle Friction in the Shear-Thinning Behavior of Non-Brownian Suspensions
,”
Soft Matter
,
17
(
25
), pp.
6088
6097
.
You do not currently have access to this content.