Abstract

The wear performance of an additively manufactured part is crucial to ensure the component’s functionality and reliability. Nevertheless, wear prediction is arduous due to numerous influential factors in both the manufacturing procedure and contact conditions. Machine learning offers a facile path to predict mechanical properties if sufficient datasets are available, without which it is very challenging to attain a high prediction accuracy. In this work, high-accuracy wear prediction of 316L stainless steel parts fabricated using laser powder bed fusion and in situ surface modification is achieved based on only 54 sets of data using a combination of an improved machine learning algorithm and data augmentation. A new modification temperature ratio was introduced for data augmentation. Four common machine learning algorithms and sparrow search algorithm optimized back propagation neural network were conducted and compared. The results indicated that the prediction accuracy of all algorithms was improved after data augmentation, while the improved machine learning algorithm achieved the highest prediction accuracy (R2 = 0.978). Such an approach is applicable to predict other systematically complex properties of parts fabricated using other additive manufacturing technologies.

References

1.
Kurzynowski
,
T.
,
Pawlak
,
A.
, and
Smolina
,
I.
,
2020
, “
The Potential of SLM Technology for Processing Magnesium Alloys in Aerospace Industry
,”
Archiv. Civil. Mech. Eng.
,
23
, p.
20
.
2.
Yang
,
Y.
,
Li
,
X.
,
Khonsari
,
M. M.
,
Zhu
,
Y.
, and
Yang
,
H.
,
2020
, “
On Enhancing Surface Wear Resistance Via Rotating Grains During Selective Laser Melting
,”
Addit. Manuf.
,
36
, p.
101583
.
3.
Guo
,
F.
,
Shen
,
H.
,
Xiong
,
Z.
,
Yang
,
Y.
,
Tong
,
X.
,
Guo
,
Y.
, and
Hao
,
S.
,
2022
, “
Selective Laser Melting of 60NiTi Alloy With Superior Wear Resistance
,”
Metals
,
12
(
4
), p.
620
.
4.
Gençoğlu
,
U.
,
Kaya
,
G.
,
Ergüder
,
T. O.
,
Hacısalihoğlu
,
İ.
, and
Yıldız
,
F.
,
2022
, “
Investigation of the Structural and Tribological Properties of 316L Stainless Steel Manufactured Using Variable Production Parameters by Selective Laser Melting
,”
J. Mater. Eng. Perform.
,
31
(
5
), pp.
3688
3703
.
5.
Sagbas
,
B.
,
Gencelli
,
G.
, and
Sever
,
A.
,
2021
, “
Effect of Process Parameters on Tribological Properties of Ti6Al4V Surfaces Manufactured by Selective Laser Melting
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
4966
4973
.
6.
Zhang
,
H. M.
,
Gu
,
D. D.
,
Ma
,
C. L.
,
Guo
,
M.
,
Wang
,
R.
,
Yang
,
J. K.
, and
Ge
,
Q.
,
2020
, “
Microstructure and Tribological Property of Selective Laser Melted Ni-Based Composites Using Different Scanning Strategies
,”
Vacuum
,
177
, p.
109439
.
7.
Yang
,
Y.
,
Zhu
,
Y.
, and
Yang
,
H.
,
2020
, “
Enhancing Wear Resistance of Selective Laser Melted Parts: Influence of Energy Density
,”
ASME J. Tribol.
,
142
(
11
), p.
111701
.
8.
Miloradović
,
N.
,
Vujanac
,
R.
,
Stojanović
,
B.
, and
Pavlović
,
A.
,
2021
, “
Dry Sliding Wear Behaviour of ZA27/SiC/Gr Hybrid Composites With Taguchi Optimization
,”
Compos. Struct.
,
264
, p.
113658
.
9.
Shen
,
M. X.
,
Li
,
B.
,
Ji
,
D. H.
,
He
,
X. R.
,
Lin
,
X. Z.
, and
Xiong
,
G. Y.
,
2021
, “
Effect of Contact Stress on the Tribology Behaviors of PTFE/316L Seal Pairs Under Various Abrasive-Contained Conditions
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
235
(
3
), pp.
639
652
.
10.
Zhang
,
K.
,
2005
, “
Effects of Test Conditions on the Tribological Behaviour of a Journal Bearing in Molten Zinc
,”
Wear
,
259
(
7–12
), pp.
1248
1253
.
11.
AlMangour
,
B.
,
Grzesiak
,
D.
, and
Yang
,
J. M.
,
2017
, “
In-Situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting
,”
J. Alloys Compd.
,
706
, pp.
409
418
.
12.
Wu
,
D. Z.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
13.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
.
14.
Barrionuevo
,
G. O.
,
Ramos-Grez
,
J. A.
,
Walczak
,
M.
, and
Betancourt
,
C. A.
,
2021
, “
Comparative Evaluation of Supervised Machine Learning Algorithms in the Prediction of the Relative Density of 316L Stainless Steel Fabricated by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
113
(
1–2
), pp.
419
433
.
15.
Kusano
,
M.
,
Miyazaki
,
S.
,
Watanabe
,
M.
,
Kishimoto
,
S.
,
Bulgarevich
,
D. S.
,
Ono
,
Y.
, and
Yumoto
,
A.
,
2020
, “
Tensile Properties Prediction by Multiple Linear Regression Analysis for Selective Laser Melted and Post Heat-Treated Ti-6Al-4V With Microstructural Quantification
,”
Mater. Sci. Eng. A
,
787
, p.
139549.
16.
Tshitoyan
,
V.
,
Dagdelen
,
J.
,
Weston
,
L.
,
Dunn
,
A.
,
Rong
,
Z.
,
Kononova
,
O.
,
Persson
,
K. A.
,
Ceder
,
G.
, and
Jain
,
A.
,
2019
, “
Unsupervised Word Embeddings Capture Latent Knowledge From Materials Science Literature
,”
Nature
,
571
(
7763
), pp.
95
98
.
17.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
18.
Thankachan
,
T.
,
Prakash
,
K. S.
, and
Kamarthin
,
M.
,
2018
, “
Optimizing the Tribological Behavior of Hybrid Copper Surface Composites Using Statistical and Machine Learning Techniques
,”
ASME J. Tribol.
,
140
(
3
), p.
031610
.
19.
Deliwala
,
A. A.
,
Dubey
,
K.
, and
Yerramalli
,
C. S.
,
2022
, “
Predicting the Erosion Rate of Uni-Directional Glass Fiber Reinforced Polymer Composites Using Machine-Learning Algorithms
,”
ASME J. Tribol.
,
144
(
9
), p.
091707
.
20.
Qiao
,
Q.
,
He
,
H. T.
,
Yu
,
J. X.
,
Zhang
,
Y. F.
, and
Qi
,
H. M.
,
2021
, “
Applicability of Machine Learning on Predicting the Mechanochemical Wear of the Borosilicate and Phosphate Glass
,”
Wear
,
476
, p.
203721
.
21.
Altay
,
O.
,
Gurgenc
,
T.
,
Ulas
,
M.
, and
Özel
,
C.
,
2019
, “
Prediction of Wear Loss Quantities of Ferro-Alloy Coating Using Different Machine Learning Algorithms
,”
Friction
,
8
(
1
), pp.
107
114
.
22.
Aydin
,
F.
, and
Durgut
,
R.
,
2021
, “
Estimation of Wear Performance of AZ91 Alloy Under Dry Sliding Conditions Using Machine Learning Methods
,”
Trans. Nonferrous Met. Soc. China
,
31
(
1
), pp.
125
137
.
23.
Aydin
,
F.
,
2021
, “
The Investigation of the Effect of Particle Size on Wear Performance of AA7075/Al2O3 Composites Using Statistical Analysis and Different Machine Learning Methods
,”
Adv. Powder. Technol.
,
32
(
2
), pp.
445
463
.
24.
Azizi
,
A.
,
Rooki
,
R.
, and
Mollayi
,
N.
,
2020
, “
Modeling and Prediction of Wear Rate of Grinding Media in Mineral Processing Industry Using Multiple Kernel Support Vector Machine
,”
SN Appl. Sci.
,
2
(9), p.
1469
.
25.
Gangwar
,
S.
, and
Pathak
,
V. K.
,
2020
, “
Dry Sliding Wear Characteristics Evaluation and Prediction of Vacuum Casted Marble Dust (MD) Reinforced ZA-27 Alloy Composites Using Hybrid Improved Bat Algorithm and ANN
,”
Mater. Today Commun.
,
25
, p.
101615
.
26.
Sadoun
,
A. M.
,
Najjar
,
I. R.
,
Alsoruji
,
G. S.
,
Abd-Elwahed
,
M. S.
,
Abd Elaziz
,
M.
, and
Fathy
,
A.
,
2022
, “
Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method
,”
Mathematics
,
10
(
8
), p.
1266
.
27.
Zhou
,
Y.
,
Dong
,
F.
,
Liu
,
Y. F.
,
Li
,
Z. F.
,
Du
,
J. F.
, and
Zhang
,
L.
,
2020
, “
Forecasting Emerging Technologies Using Data Augmentation and Deep Learning
,”
Scientometrics
,
123
(
1
), pp.
1
29
.
28.
Cheny
,
Z.
,
Fuy
,
Y.
,
Zhang
,
Y.
,
Jiang
,
Y. G.
,
Xue
,
X.
, and
Sigal
,
L.
,
2019
, “
Multi-level Semantic Feature Augmentation for One-Shot Learning
,”
IEEE Trans. Image Process.
,
28
(
9
), pp.
4594
4605
.
29.
Ansari
,
P.
,
Rehman
,
A. U.
,
Pitir
,
F.
,
Veziroglu
,
S.
,
Mishra
,
Y. K.
,
Aktas
,
O. C.
, and
Salamci
,
M. U.
,
2021
, “
Selective Laser Melting of 316L Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation
,”
Metals
,
11
(
7
), p.
1076
.
30.
Bermejo
,
S.
, and
Cabestany
,
J.
,
2000
, “
Adaptive Soft k-Nearest-Neighbour Classifiers
,”
Pattern Recognit.
,
33
(
12
), pp.
1999
2005
.
31.
Yu
,
P. S.
,
Chen
,
S. T.
, and
Chang
,
I. F.
,
2006
, “
Support Vector Regression for Real-Time Flood Stage Forecasting
,”
J. Hydrol.
,
328
(
3–4
), pp.
704
716
.
32.
Kotsiantis
,
S. B.
,
2011
, “
Decision Trees: A Recent Overview
,”
Artif. Intell. Rev.
,
39
(
4
), pp.
261
283
.
33.
Shanmuganathan
,
S.
,
2016
,
Artificial Neural Network Modeling: An Introduction
,
Springer International Publishing
,
Warsaw, Poland
,
1
14
.
34.
D’Addona
,
D. M.
,
Ullah
,
A. M. M. S.
, and
Matarazzo
,
D.
,
2015
, “
Tool-Wear Prediction and Pattern-Recognition Using Artificial Neural Network and DNA-Based Computing
,”
J. Intell. Manuf.
,
28
(
6
), pp.
1285
1301
.
35.
Xue
,
J. K.
, and
Shen
,
B.
,
2020
, “
A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm
,”
Syst. Sci. Control. Eng.
,
8
(
1
), pp.
22
34
.
36.
Kong
,
D. D.
,
Chen
,
Y. J.
, and
Li
,
N.
,
2018
, “
Gaussian Process Regression for Tool Wear Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
556
574
.
37.
Hulett
,
C.
,
Hall
,
A.
, and
Qu
,
G.
,
2012
, “
Dynamic Selection of k Nearest Neighbors in Instance-Based Learning
,”
2012 IEEE 13th International Conference on Information Reuse & Integration (IRI)
,
Las Vegas, NV
,
Aug. 8–10
, pp.
85
92
.
38.
Sangeetha
,
R.
, and
Kalpana
,
B.
,
2010
, “A Comparative Study and Choice of an Appropriate Kernel for Support Vector Machines,”
Information and Communication Technologies
,
V. V.
Das
and
R.
Vijaykumar
, eds.,
Springer
,
Berlin
, pp.
549
553
.
39.
Rokach
,
L.
, and
Maimon
,
O.
,
2014
,
Data Mining With Decision Trees. Theory and Applications
,
World Scientific
,
Singapore
.
40.
Hinton
,
G. E.
,
Osindero
,
S.
, and
Teh
,
Y. W.
,
2006
, “
A Fast Learning Algorithm for Deep Belief Nets
,”
Neural Comput.
,
18
(
7
), pp.
1527
1554
.
You do not currently have access to this content.