Abstract

The relative volume and falling body viscosity of a common high-pressure rheology reference lubricant, di-(2-ethylhexyl) sebacate (DEHS), are presented. Relative volume measurements up to 300 MPa are completed with a piezo-bellows relative volume cartridge. Viscosity measurements up to 1 GPa are completed with a pressurized falling body viscometer. Digital signal-processing routines used for viscosity and relative volume measurements are discussed. The viscosity data are then fit into the modified Yasutomi model. Integration of this fit, as well as that of other models found in the literature, is used to propose a pressure–viscosity coefficient model. Comparisons are first made to DEHS, followed by the application of the study results to 17 other well-documented fluids. The validity of this method is investigated using the integrated viscosity model of DEHS as well as other available datasets presented in literature. The authors perform a comparison between the calculated pressure–viscosity coefficient α* and those presented for the mentioned datasets created with the signal-processing routines. The analysis shows that the proposed pressure–viscosity coefficient model is able to accurately capture the inverse of the asymptotic isoviscous pressure response of the majority of data when compared to other calculation methods.

References

1.
Dowson
,
D.
, and
Higginson
,
G.
,
1977
,
Elasto-Hydrodynamic Lubrication, SI Edition
,
Pergamon Press Ltd.
,
New York
.
2.
Hamrock
,
B.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts—Part III—Fully Flooded Results
,”
ASME J. Lubr. Tech.
,
99
(
2
), pp.
264
275
.
3.
Chittenden
,
R.
,
Dowson
,
D.
,
Dunn
,
J.
, and
Taylor
,
C.
,
1985
, “
A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts I. Direction of Lubricant Entrainmnet Coincident With the Major Axis of the Hertzian Contact Ellipse
,”
Proc. R. Soc. Lond.
,
A
(
397
), pp.
245
269
.
4.
Gupta
,
P.
,
Cheng
,
H.
,
Zhu
,
D.
,
Forster
,
N.
, and
Schrand
,
J.
,
1991
, “
Viscoelastic Effects in Mil-L-7808 Type Lubricants, Part 1: Analytical Formulation
,”
ASLE Trans
,
35
(
2
), pp.
269
274
.
5.
Bair
,
S.
,
2019
,
High Pressure Rheology for Quantitative Elastohydrodynamics
, 2nd ed.,
Elsevier
,
Cambridge
.
6.
Habchi
,
W.
,
2018
,
Finite Element Modeling of Elastohydrodynamic Lubrication Problems
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
7.
Harris
,
T.
, and
Kotzalas
,
M.
,
2006
,
Rolling Bearing Analysis
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
8.
Biboulet
,
N.
, and
Houpert
,
L.
,
2010
, “
Hydrodynamic Force and Moment in Pure Rolling Lubricated Contacts: Part 1—Line Contact
,”
J. Eng. Tribol.
,
224
(
8
), pp.
765
775
.
9.
Biboulet
,
N.
, and
Houpert
,
L.
,
2010
, “
Hydrodynamic Force and Moment in Pure Rolling Lubricated Contacts: Part 2—Point Contact
,”
J. Eng. Tribol.
,
224
(
8
), pp.
777
787
.
10.
Westlake
,
F.
, and
Cameron
,
A.
,
1972
, “
Optical Elastohydrodynamic Fluid Testing
,”
ASLE Trans.
,
15
(
2
), pp.
81
95
.
11.
Bair
,
S.
,
1993
, “
An Experimental Verification of the Significance of the Reciprocal Asymptotic Isoviscous Pressure for EHD Lubricants
,”
Tribol. Trans.
,
32
(
2
), pp.
153
162
.
12.
Bair
,
S.
,
Liu
,
Y.
, and
J.
,
W. Q.
,
2006
, “
The Pressure Viscosity Coefficient for Newtonian EHL Film Thickness With General Piezoviscous Response
,”
Trans. ASME
,
128
(
3
), pp.
624
631
.
13.
Nishibata
,
K.
, and
Izuchi
,
M.
,
1986
, “
A Rolling Ball Viscometer for High Pressure Use
,”
Phsycia B + C
,
139–140B
, pp.
903
906
.
14.
Bridgman
,
P.
,
1931
, “
The Volume of Eighteen Liquids as a Function of Pressure and Temperature
,”
Proc. Am. Acad. Arts Sci.
,
66
(
5
), pp.
185
233
.
15.
Lemmon
,
E.
,
McLinden
,
M.
, and
Friend
,
D.
, “Thermophysical Properties of Fluid Systems,”
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
P. J.
Linstrom
, and
W. G.
Mallard
, eds.,
National Institute of Standards and Technology
,
Gaithersburg, MD
, p.
20899
.
16.
Dandridge
,
A.
, and
Jackson
,
D.
,
1981
, “
Measurements of Viscosity Under Pressure: A New Method
,”
J. Phys. D: Appl. Phys.
,
14
(
5
), pp.
829
831
.
17.
Hersey
,
M.
,
1916
, “
The Theory of the Torsion and the Rolling Ball Viscometers, and Their Use in Measuring the Effect of Pressure on Viscosity
,”
J. Was. Acad. Sci.
,
6
(
15
), pp.
525
530
.
18.
Bridgeman
,
P.
,
1926
, “
The Effect of Pressure on the Viscosity of Forty-Three Pure Liquids
,”
Proc. Am. Acad. Arts Sci.
,
61
(
3
), pp.
57
99
.
19.
Boelhouwer
,
J.
, and
Toneman
,
L.
,
1957
, “
The Viscosity-Pressure Dependence of Some Organic Liquids
,”
Proceedings of the Conference on Lubrication and Wear
,
London, UK
,
Oct. 1–3
.
20.
Sawamura
,
S.
,
Takeuchi
,
N.
,
Kitamura
,
K.
, and
Taniguchi
,
Y.
,
1990
, “
High Pressure Rolling-Ball Viscometer of a Corrosion-Resistant Type
,”
Rev. Sci. Instrum.
,
2
(
61
), pp.
871
873
.
21.
Irving
,
J.
, and
Barlow
,
A.
,
1971
, “
An Automatic High Pressure Viscometer
,”
J. Phys. E: Sci. Instrum.
,
4
(
3
), pp.
232
236
.
22.
Mclachlan
,
R.
,
1976
, “
A new High Pressure Viscometer for Viscosity Range 10 to 1e6 Pa s
,”
J. Phys. E: Sci. Instrum.
,
9
(
5
), pp.
391
394
.
23.
Bair
,
S.
,
2004
, “
A Routine High-Pressure Viscometer for Accurate Measurements to 1 GPa
,”
Tribol. Trans.
,
47
(
3
), pp.
356
360
.
24.
Irving
,
J.
,
1977
, “
Viscosity Measurements at Pressures up to 14,000 Bar Using an Automatic Falling Cylinder Viscometer
,”
Ph.D. thesis
,
University of Glasgow, Department of Electronics and Electrical Engineering
.
25.
Bair
,
S.
,
2006
, “
Reference Liquids for Quantitative Elastohydrodynamics: Selection and Rheological Characterization
,”
Tribol. Lett.
,
22
(
2
), pp.
197
206
.
26.
Schmidt
,
K.
,
Pagnutti
,
D.
,
Curran
,
M.
,
Singh
,
A.
,
Trusler
,
J.
,
Maitland
,
G.
, and
McBride-Wright
,
M.
,
2015
, “
New Experimental Data and Reference Models for the Viscosity and Density of Squalane
,”
J. Chem. Eng. Data
,
60
(
1
), pp.
137
150
.
27.
Comunas
,
M.
,
Paredes
,
X.
,
Gacino
,
F.
,
Fernandez
,
J.
,
Bazile
,
J.
,
Boned
,
C.
,
Daridon
,
J.
,
Galliero
,
G.
,
Pauly
,
J.
, and
Harris
,
K.
,
2014
, “
Viscosity Measurements for Squalane at High Pressures to 350 MPa From T=(293.15 to 363.15)K
,”
J. Chem. Thermodyn.
,
69
, pp.
201
208
.
28.
Bair
,
S.
,
2016
, “
The Temperature and Pressure Dependence of Viscosity and Volume for Two Reference Liquids
,”
Lubr. Sci.
,
28
(
2
), pp.
81
95
.
29.
Wakeham
,
W. A.
,
Asseal
,
M. J.
,
Avelino
,
H. M. N. T.
,
Bair
,
S.
,
Baled
,
H. O.
,
Bamgbade
,
B. A.
,
Bazile
,
J.-P.
et al,
2017
, “
In Pursuit of a High-Temperature, High-Pressure, High-Viscosity Standard: The Case of Tris(2-Ethylhexyl) Trimellitate
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2884
2895
.
30.
Diogo
,
J.
,
Avelino
,
H. M.
, and
Caetano
,
F. J.
,
2014
, “
Tris(2-Ethylhexyl) Trimellitate (TOTM) a Potential Reference Fluid for High Viscosity. Part 1: Viscosity Measurements at Temperatures From (303 to 373)K and Pressures Up to 65 MPa, Using a Novel Vibrating-Wire Isntrument
,”
Fluid Phase Equilib.
,
384
, pp.
50
59
.
31.
Diogo
,
J. C. F.
,
Avelino
,
H. M. N. T.
,
Caetano
,
F. J. P.
,
Fareleira
,
J. M. N. A.
, and
Wakeham
,
W. A.
,
2016
, “
Tris(2-Ethylhexyl) Trimellitate (TOTM) as a Potential Industrial Reference Fluid for Viscosity at High Temperatures and High Pressures: New Viscosity, Density, and Surface Tension Measurements
,”
Fluid Phase Equilib.
,
418
, pp.
192
197
.
32.
Lineira Del Rio
,
J.
,
Guimarey
,
M.
,
Comunas
,
M.
, and
Fernandez
,
J.
,
2019
, “
High Pressure Viscosity Behavior of Tris(2-Ethylhexyl) Trimellitate Up to 150 MPa
,”
J. Chem. Thermodyn.
,
138
, pp.
159
166
.
33.
Kleinschmidt
,
R. V.
,
Bradbury
,
D.
, and
Mark
,
M.
,
1953
, “Viscosity and Density of over Forty Lubricating Fluids of Known Composition at Pressures to 150,000 psi and Temperatures to 425 F,” ASME Report, Vol. 1,
American Society of Mechanical Engineers
,
New York
.
34.
Paredes
,
X.
,
Fandino
,
O.
,
Pensado
,
A.
,
Comunas
,
M.
, and
Fernandez
,
J.
,
2012
, “
Experimental Density and Viscosity Measurements for Di(2ethylhexyl)Sebacate
,”
J. Chem. Thermodyn.
,
44
(
1
), pp.
38
43
.
35.
Novak
,
J.
,
1968
, “
An Experimental Investigation of the Combined Effects of Pressure, Temperature, and Shear Stress Upon Viscosity
,”
Ph.D. dissertation
,
The University of Michigan
.
36.
SAE International
,
2020
,
Aerospace Recommended Practice ARP6157A—Pressure-Viscosity Coefficient Measurements
,
SAE International
,
Warrendale, PA
.
37.
Vergne
,
P.
, and
Bair
,
S.
,
2014
, “
Classical EHL Versus Quantitative EHL: A Perspective Part I—Real Viscosity-Pressure Dependence and the Viscosity-Pressure Coefficient for Predicting Film Thickness
,”
Tribol, Lett.
,
54
(
1
), pp.
1
12
.
38.
Blok
,
H.
,
1963
, “
Inverse Problems In Hydrodynamic Lubrication and Design Directives for Lubricated Flexible Surfaces
,”
Proceedings of the International Symposium on Lubrication and Wear
,
Houston, TX
, June 10–28.
39.
Bair
,
S.
, and
Qureshi
,
F.
,
2008
, “
Accurate Measurements of Pressure-Viscosity Behavior in Lubricants
,”
Tribol. Trans.
,
45
(
3
), pp.
390
396
.
40.
Witt
,
K.
,
1974
, “
Die Berechnung Physikalischer uno Thermodynamischer Kennwerte von Druckflossigkeiten, Sowie die Bestimmung des Gesamtwirkungsgrades an Pumpen Unter Berocksichtigung der Thermodynamik for die Druckflossigkeit
,”
Ph.D. thesis
,
Eindhoven University of Technology
,
Eindhoven
.
41.
Vergne
,
P.
,
1990
, “
New High-Pressure Viscosity Measurements on Di(2-Ethylhexyl) Sebacate and Comparisons With Previous Data
,”
High Temp. High Pres.
,
22
, pp.
613
621
.
42.
McEwen
,
E.
,
1952
, “
The Effect of Variation of Viscosity With Pressure on the Load-Carrying Capacity of the Oil Film Between Gear-Teeth
,”
J. Inst. Petrol.
,
38
, pp.
344
345
.
You do not currently have access to this content.