Abstract

This study describes experimental results using carbon fiber-reinforced carbon (C/C) material for porous journal bearings under static conditions. Exerted radial forces of up to 90 N, a supply pressure of up to 6 bar, and a maximum rotational speed of 8000 rpm were tested. The occurrence of pneumatic hammering was not observed under these operating points. Triangulation sensors were mounted vertically and horizontally as well as in front of and behind the tested bearing. These sensors measure the eccentricity and misalignment. The orbit analysis demonstrated an improvement in concentricity with an increment in the supply pressure. The layered structure of the C/C material used for the porous liner is presented. A rotational speed below 8000 rpm negligibly influenced the load-carrying capacity and the flowrate. The vertical misalignment of the shaft was determined in relation to the force-applied test bearing. In addition, two vertically positioned sensors on the support-bearing housing were used to discern the misalignment in the absolute system. On the other hand, reducing the speed to 1000 rpm increased the concentricity error. The shaft showed no significant signs of use after the experiments. The measurements confirm the suitability of the material for porous bearings.

References

1.
Rachuk
,
V. S.
,
Dmitrenko
,
A. I.
,
Buser
,
M.
, and
Minick
,
A.
,
2008
, “
Single Shaft Turbopump Expands Capabilities of Upper Stage Liquid Propulsion
,”
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition.
,
Hartford, CT
,
July 21–23
.
2.
Caisso
,
P.
,
Barton
,
J.
,
Illig
,
M.
, and
Margat
,
T.
,
2000
, “
Development Status of the Vulcain 2 Engine
,”
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition.
,
Las Vegas, NV
,
July 24–28
.
3.
Mokhtar
,
M. O. A.
,
Rafaat
,
M.
, and
Shawki
,
G. S. A.
,
1984
, “
Experimental Investigations into the Performance of Porous Journal Bearings
,”
SAE Technical Papers
.
4.
Elsharkawy
,
A. A.
, and
Guedouar
,
L. H.
,
2001
, “
Hydrodynamic Lubrication of Porous Journal Bearings Using a Modified Brinkman-Extended Darcy Model
,”
Tribol. Int.
,
34
(
11
), pp.
767
777
.
5.
Al-Bender
,
F.
,
2021
,
Air Bearings: Theory, Design and Applications
,
Wiley
,
New York
.
6.
Yoshimoto
,
S.
,
Tozuka
,
H.
, and
Dambara
,
S.
,
2003
, “
Static Characteristics of Aerostatic Porous Journal Bearings With a Surface-Restricted Layer
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
217
(
2
), pp.
125
132
.
7.
Otsu
,
Y.
,
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2011
, “
Dynamic Characteristics of Aerostatic Porous Journal Bearings With a Surface-Restricted Layer
,”
ASME J. Tribol.
,
133
(
1
), p.
011701
.
8.
Kazimierski
,
Z.
, and
Jarzecki
,
K.
,
1979
, “
Stability Threshold of Flexibly Supported Hybrid Gas Journal Bearings
,”
ASME J. Tribol.
,
101
(
4
), pp.
451
457
.
9.
Lee
,
Y.-J.
,
Lee
,
K.-H.
, and
Lee
,
C.-H.
,
2018
, “
Self-Lubricating and Friction Performance of a Three-Dimensional- Printed Journal Bearing
,”
ASME J. Tribol.
,
140
(
5
), p.
054501
.
10.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
,
1970
, “
Steady-State Experiments on Rotating Externally Pressurized Air-Lubricated Journal Bearings
,”
ASME J. Tribol.
,
92
(
2
), pp.
336
345
.
11.
Markho
,
P. H.
,
Grewal
,
S. S.
, and
Stowell
,
T. B.
,
1979
, “
An Experimental Investigation of the Effect of Misalignment and Directionality on the Performance of an Externally-Pressurized, Orifice-Compensated Air Journal Bearing
,”
ASME J. Tribol.
,
101
(
1
), pp.
28
37
.
12.
Stowell
,
T. B.
,
Markho
,
P. H.
, and
Grewal
,
S. S.
,
1980
, “
An Experimental Investigation of the Effect of Inter-Orifice Variations on the Performance of an Externally-Pressurized, Orifice-Compensated Air Journal Bearing
,”
ASME J. Lubr. Technol.
,
102
(
4
), pp.
505
510
.
13.
Yamada
,
H.
,
Taura
,
H.
, and
Kaneko
,
S.
,
2017
, “
Static Characteristics of Journal Bearings with Square Dimples
,”
ASME J. Tribol.
,
139
(
5
), p.
051703
.
14.
Korenaga
,
A.
,
Mano
,
H.
,
Omura
,
A.
,
Ohana
,
T.
,
Aso
,
S.
,
Sadakata
,
K.
,
Tanabe
,
S.
,
Akiyama
,
Y.
, and
Habuki
,
F.
,
2020
, “
Friction Reduction of Oil-Impregnated Sintered Bearings by Surface Texturing
,”
ASME J. Tribol.
,
142
(
9
), p.
091801
.
15.
Uhlmann
,
E.
, and
Neumann
,
C.
,
2006
, “Air Bearings Based on Porous Ceramic Composites,”
Intelligent Production Machines and Systems
,
Elsevier
,
New York
, pp.
211
216
.
16.
Ortelt
,
M.
,
Seiler
,
H.
,
Boehle
,
M.
, and
Munk
,
D.
,
2019
, “
Black Engine Ceramic Rocket Propulsion
,”
70th International Astronautical Congress IAC 2019.
17.
Krenkel
,
W.
,
2001
, “
Cost Effective Processing of CMC Composites by Melt Infiltration (LSI-Process)
,”
Ceramic Engineering and Science Proceedings
, pp.
443
454
.
18.
Dittert
,
C.
, and
Kütemeyer
,
M.
,
2018
, “
Octra-Optimized Ceramic for Hypersonic Application With Transpiration Cooling
,”
Ceram. Trans.
,
263
(
37
), pp.
389
399
.
19.
Hald
,
H.
,
Ortelt
,
M.
,
Fischer
,
I.
, and
Greuel
,
D.
,
2003
, “
CMC Rocket Combustion Chamber with Effusion Cooling
,”
54th International Astronautical Congress of the International Astronautical Federation (IAF), the International Academy of Astronautics and the International Institute of Space Law
,
Bremen, Germany
,
Sept. 29–Oct. 3
.
20.
Belforte
,
G.
,
Raparelli
,
T.
,
Viktorov
,
V.
, and
Trivella
,
A.
,
2007
, “
Permeability and Inertial Coefficients of Porous Media for Air Bearing Feeding Systems
,”
ASME J. Tribol.
,
129
(
4
), pp.
705
711
.
21.
JCGM 100
,
2008
, “
JCGM 100:2008—Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,”
Jt. Comm. Guid. Metrol. Sevres, Fr.
,
50
.
22.
Wu
,
E. R.
,
1979
, “
Gas-Lubricated Porous Bearings of Finite Length-Self-Acting Journal Bearings
,”
ASME J. Tribol.
,
101
(
3
), pp.
338
347
.
23.
Chien
,
S. Y.
,
Cramer
,
M.
, and
Untaroiu
,
A.
,
2017
, “
A Compressible Thermohydrodynamic Analysis of Journal Bearings Lubricated with Supercritical CO2
,”
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM 2017.
24.
Someya
,
T.
,
1989
,
Journal-Bearing Databook
,
Springer
,
Berlin, Heidelberg
.
25.
Czolczynski
,
K.
,
1999
,
Rotordynamics of Gas-Lubricated Journal Bearing Systems
,
Springer
,
New York
.
26.
Dal
,
A.
, and
Karaçay
,
T.
,
2021
, “
Pneumatic Hammer Instability in the Aerostatic Journal Bearing–Rotor System: A Theoretical and Experimental Analyses
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
3
), pp.
524
543
.
27.
Stolarski
,
T. A.
,
2011
, “
Running Characteristics of Aerodynamic Bearing with Self-Lifting Capability at Low Rotational Speed
,”
Adv. Trib.
,
2011
, pp.
1
10
.
28.
Böhle
,
M.
,
Gu
,
Y.
, and
Schimpf
,
A.
,
2019
, “
Two Flow Models for Designing Hydrostatic Bearings with Porous Material
,”
ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJK Fluids 2019
,
San Francisco, CA
,
July 28–Aug. 1
.
You do not currently have access to this content.