Abstract

Both strain hardening and indenter elastic deformation are unavoidable in most engineering contacts. By the finite element (FE) method, this paper investigates the unloading behavior of elastic-power-law strain hardening half-space frictionlessly indented by elastic sphere for systematic materials. The effects of indenter elasticity on the unloading curve, cavity profile during unloading, and residual indentation of strain hardening contact are analyzed. The unloading curve is observed to follow a power-law relationship, whose exponent is sensitive to strain hardening but independent upon indenter elastic deformation. The indenter elasticity hugely affects the residual indentation of strain hardening materials. Based on the power-law relationship of the unloading curve and the expression of the residual indentation fitted from the FE data, an innovative contact unloading law of strain hardening materials considering the indenter elasticity effect is developed. Its suitability is validated both numerically and experimentally by strain hardening materials contacted by elastic indenter or rigid flat.

References

1.
Sorger
,
G. L.
,
Oliveira
,
J. P.
,
Inácio
,
P. L.
,
Enzinger
,
N.
,
Vilaça
,
P.
,
Miranda
,
R. M.
, and
Santos
,
T. G.
,
2019
, “
Non-Destructive Microstructural Analysis by Electrical Conductivity: Comparison With Hardness Measurements in Different Materials
,”
J. Mater. Sci. Technol.
,
35
(
3
), pp.
360
368
.
2.
Li
,
W.
,
Wang
,
M.
, and
Cheng
,
J.
,
2020
, “
Indentation Hardness of the Cohesive-Frictional Materials
,”
Int. J. Mech. Sci.
,
180
, p.
105666
.
3.
Christoforou
,
A. P.
,
Yigit
,
A. S.
, and
Majeed
,
M.
,
2013
, “
Low-Velocity Impact Response of Structures With Local Plastic Deformation: Characterization and Scaling
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011012
.
4.
Rathbone
,
D.
,
Marigo
,
M.
,
Dini
,
D.
, and
Van Wachem
,
B.
,
2015
, “
An Accurate Force–Displacement Law for the Modelling of Elastic–Plastic Contacts in Discrete Element Simulations
,”
Powder Technol.
,
282
, pp.
2
9
.
5.
Dong
,
M.
,
Li
,
Q.
,
Liu
,
H.
,
Liu
,
C.
,
Wujcik
,
E. K.
,
Shao
,
Q.
,
Ding
,
T.
,
Mai
,
X.
,
Shen
,
C.
, and
Guo
,
Z.
,
2018
, “
Thermoplastic Polyurethane-Carbon Black Nanocomposite Coating: Fabrication and Solid Particle Erosion Resistance
,”
Polymer
,
158
, pp.
381
390
.
6.
Szymczak-Graczyk
,
A.
,
2020
, “
Numerical Analysis of the Impact of Thermal Spray Insulation Solutions on Floor Loading
,”
Appl. Sci.
,
10
(
3
), p.
1016
.
7.
Jackson
,
R. L.
,
Ghaednia
,
H.
,
Elkady
,
Y. A.
,
Bhavnani
,
S. H.
, and
Knight
,
R. W.
,
2012
, “
A Closed-Form Multiscale Thermal Contact Resistance Model
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
7
), pp.
1158
1171
.
8.
Deng
,
G. Y.
,
Zhu
,
H. T.
,
Tieu
,
A. K.
,
Su
,
L. H.
, and
Wu
,
Q.
,
2017
, “
Theoretical and Experimental Investigation of Thermal and Oxidation Behaviours of a High Speed Steel Work Roll During Hot Rolling
,”
Int. J. Mech. Sci.
,
131
, pp.
811
826
.
9.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Gao
,
J.
,
2015
, “
A Third Body Contact Model for Particle Contaminated Electrical Contacts
,”
2014 IEEE 60th Holm Conference on Electrical Contacts (Holm)
,
New Orleans, LA
,
Oct. 12–15, 2014
, IEEE, pp.
1
5
.
10.
Liu
,
X. L.
,
Cai
,
Z. B.
,
Xiao
,
Q.
,
Shen
,
M. X.
,
Yang
,
W. B.
, and
Chen
,
D. Y.
,
2020
, “
Fretting Wear Behavior of Brass/Copper-Graphite Composites as a Contactor Material Under Electrical Contact
,”
Int. J. Mech. Sci.
,
184
, p.
105703
.
11.
Qiu
,
D.
,
Peng
,
L.
,
Yi
,
P.
, and
Lai
,
X.
,
2017
, “
A Micro Contact Model for Electrical Contact Resistance Prediction Between Roughness Surface and Carbon Fiber Paper
,”
Int. J. Mech. Sci.
,
124–125
, pp.
37
47
.
12.
Borjali
,
A.
,
Langhorn
,
J.
,
Monson
,
K.
, and
Raeymaekers
,
B.
,
2017
, “
Using a Patterned Microtexture to Reduce Polyethylene Wear in Metal-on-Polyethylene Prosthetic Bearing Couples
,”
Wear
,
392
, pp.
77
83
.
13.
Borjali
,
A.
,
Monson
,
K.
, and
Raeymaekers
,
B.
,
2018
, “
Friction Between a Polyethylene Pin and a Microtextured CoCrMo Disc, and Its Correlation to Polyethylene Wear, as a Function of Sliding Velocity and Contact Pressure, in the Context of Metal-on-Polyethylene Prosthetic Hip Implants
,”
Tribol. Int.
,
127
, pp.
568
574
.
14.
Borjali
,
A.
,
Monson
,
K.
, and
Raeymaekers
,
B.
,
2019
, “
Predicting the Polyethylene Wear Rate in Pin-on-Disc Experiments in the Context of Prosthetic Hip Implants: Deriving a Data-Driven Model Using Machine Learning Methods
,”
Tribol. Int.
,
133
, pp.
101
110
.
15.
Langhorn
,
J.
,
Borjali
,
A.
,
Hippensteel
,
E.
,
Nelson
,
W.
, and
Raeymaekers
,
B.
,
2018
, “
Microtextured CoCrMo Alloy for Use in Metal-on-Polyethylene Prosthetic Joint Bearings: Multi-Directional Wear and Corrosion Measurements
,”
Tribol. Int.
,
124
, pp.
178
183
.
16.
Kardel
,
K.
,
Ghaednia
,
H.
,
Carrano
,
A. L.
, and
Marghitu
,
D. B.
,
2017
, “
Experimental and Theoretical Modeling of Behavior of 3D-Printed Polymers Under Collision With a Rigid rod
,”
Addit. Manuf.
,
14
, pp.
87
94
.
17.
Pawlowski
,
A. E.
,
Cordero
,
Z. C.
,
French
,
M. R.
,
Muth
,
T. R.
,
Carver
,
J. K.
,
Dinwiddie
,
R. B.
, et al
,
2017
, “
Damage-Tolerant Metallic Composites Via Melt Infiltration of Additively Manufactured Preforms
,”
Mater. Des.
,
127
, pp.
346
351
.
18.
Ghaednia
,
H.
,
Mifflin
,
G.
,
Lunia
,
P.
,
O’Neill
,
E. O.
, and
Brake
,
M. R. W.
,
2020
, “
Strain Hardening From Elastic-Perfectly Plastic to Perfectly Elastic Indentation Single Asperity Contact
,”
Front. Mech. Eng.
,
6
.
19.
Ghaednia
,
H.
,
Brake
,
M. R. W.
,
Berryhill
,
M.
, and
Jackson
,
R. L.
,
2018
, “
Strain Hardening From Elastic–Perfectly Plastic to Perfectly Elastic Flattening Single Asperity Contact
,”
ASME J. Tribol.
,
141
(
3
), p.
031402
.
20.
Taljat
,
B.
,
Zacharia
,
T.
, and
Haggag
,
F. M.
,
1997
, “
Analysis of Ball-Indentation Load-Depth Data: Part I. Determining Elastic Modulus
,”
J. Mater. Res.
,
12
(
4
), pp.
965
974
.
21.
Taljat
,
B.
,
Zacharia
,
T.
, and
Kosel
,
F.
,
1998
, “
New Analytical Procedure to Determine Stress-Strain Curve From Spherical Indentation Data
,”
Int. J. Solids Struct.
,
35
(
33
), pp.
4411
4426
.
22.
Rodriguez
,
S. A.
,
Alcala
,
J.
, and
Souza
,
R. M.
,
2012
, “
The Reduced Modulus in the Analysis of Sharp Instrumented Indentation Tests
,”
J. Mater. Res.
,
27
(
16
), pp.
2148
2160
.
23.
Rodríguez
,
S. A.
,
Alcalá
,
J.
, and
Martins Souza
,
R.
,
2011
, “
Effects of Elastic Indenter Deformation on Spherical Instrumented Indentation Tests: The Reduced Elastic Modulus
,”
Philos. Mag. Lett.
,
91
(
7–9
), pp.
1370
1386
.
24.
Dong
,
X.
,
Yin
,
X.
,
Deng
,
Q.
,
Yu
,
B.
,
Wang
,
H.
,
Weng
,
P.
,
Chen
,
C.
, and
Yuan
,
H.
,
2018
, “
Local Contact Behavior Between Elastic and Elastic–Plastic Bodies
,”
Int. J. Solids Struct.
,
150
, pp.
22
39
.
25.
Weng
,
P.
,
Yin
,
X.
,
Hu
,
W.
,
Yuan
,
H.
,
Chen
,
C.
,
Ding
,
H.
,
Yu
,
B.
,
Xie
,
W.
,
Jiang
,
L.
, and
Wang
,
H.
,
2021
, “
Piecewise Linear Deformation Characteristics and a Contact Model for Elastic-Plastic Indentation Considering Indenter Elasticity
,”
Tribol. Int.
,
162
, p.
107114
.
26.
Carter
,
C. B.
,
Baskes
,
M. I.
, and
Mukherjee
,
R.
,
2015
, “
Superhard Silicon Nanospheres
,”
J. Mech. Phys. Solids
,
51
(
6
), pp.
979
992
.
27.
Majumder
,
S.
,
Mcgruer
,
N. E.
,
Adams
,
G. G.
, and
Zavracky
,
A.
,
2001
, “
Study of Contacts in an Electrostatically Actuated Microswitch
,”
Sensors and Actuators A: Physical
,
93
(
1
), pp.
19
26
.
28.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Unloading an Elastic–Plastic Contact of Rough Surfaces
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2652
2674
.
29.
Chen
,
C.
,
Yin
,
X.
,
Wang
,
H.
,
Jin
,
T.
,
Zhang
,
L.
,
Xie
,
W.
, and
Weng
,
P.
,
2020
, “
Unloading Behavior of Low Velocity Impact Between Elastic and Elastic-Plastic Bodies
,”
Tribol. Int.
,
151
, p.
106485
.
30.
Li
,
L. Y.
, and
Gu
,
J. Z.
,
2009
, “
An Analytical Solution for the Unloading in Spherical Indentation of Elastic–Plastic Solids
,”
Int. J. Eng. Sci.
,
47
(
3
), pp.
452
462
.
31.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
32.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
33.
Tabor
,
D.
,
1948
, “
A Simple Theory of Static and Dynamic Hardness
,”
Proc. R. Soc. A
,
192
(
1029
), pp.
247
274
.
34.
Kral
,
E.
,
Komvopoulos
,
K.
, and
Bogy
,
D.
,
1993
, “
Elastic-Plastic Finite Element Analysis of Repeated Indentation of a Half-Space by a Rigid Sphere
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
829
841
.
35.
Ye
,
N.
, and
Komvopoulos
,
K.
,
2003
, “
Effect of Residual Stress in Surface Layer on Contact Deformation of Elastic-Plastic Layered Media
,”
ASME J. Tribol.
,
125
(
4
), pp.
692
699
.
36.
Kral
,
E.
,
Komvopoulos
,
K.
, and
Bogy
,
D.
,
1995
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part II: Subsurface Results
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
29
42
.
37.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1995
, “
Finite Element Analysis of Repeated Indentation of an Elastic-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
20
28
.
38.
Jackson
,
R.
,
Chusoipin
,
I.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts
,”
ASME J. Tribol.
,
127
(
3
), pp.
484
493
.
39.
Li
,
L. Y.
,
Wu
,
C. Y.
, and
Thornton
,
C.
,
2002
, “
A Theoretical Model for the Contact of Elastoplastic Bodies
,”
Proc. Inst. Mech. Eng.—Part C
,
216
(
4
), pp.
421
431
.
40.
Brake
,
M. R.
,
2012
, “
An Analytical Elastic-Perfectly Plastic Contact Model
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3129
3141
.
41.
Ma
,
D.
, and
Liu
,
C.
,
2015
, “
Contact Law and Coefficient of Restitution in Elastoplastic Spheres
,”
ASME J. Appl. Mech.
,
82
(
12
), p.
121006
.
42.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
116
126
.
43.
Olsson
,
E.
, and
Larsson
,
P. L.
,
2013
, “
On Force–Displacement Relations at Contact Between Elastic–Plastic Adhesive Bodies
,”
J. Mech. Phys. Solids
,
61
(
5
), pp.
1185
1201
.
44.
Jackson
,
R. L.
,
Green
,
I.
, and
Dan
,
B. M.
,
2010
, “
Predicting the Coefficient of Restitution of Impacting Elastic-Perfectly Plastic Spheres
,”
Nonlinear Dyn.
,
60
(
3
), pp.
217
229
.
45.
Ghaednia
,
H.
,
Dan
,
B. M.
, and
Jackson
,
R. L.
,
2015
, “
Predicting the Permanent Deformation After the Impact of a Rod With a Flat Surface
,”
ASME J. Tribol.
,
137
(
1
), p.
011403
.
46.
Kogut
,
L.
, and
Komvopoulos
,
K.
,
2004
, “
Analysis of the Spherical Indentation Cycle for Elastic–Perfectly Plastic Solids
,”
J. Mater. Res.
,
19
(
12
), pp.
3641
3653
.
47.
Du
,
Y.
, and
Wang
,
S.
,
2009
, “
Energy Dissipation in Normal Elastoplastic Impact Between Two Spheres
,”
ASME J. Appl. Mech.
,
76
(
6
), p.
061010
.
48.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.
49.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
2000
, “
A Normal Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
363
371
.
50.
Jin
,
T.
,
Yin
,
X.
,
Wang
,
H.
,
Zhang
,
L.
,
Qi
,
X.
,
Deng
,
Q.
,
Yu
,
B.
,
Hao
,
Q.
, and
Dong
,
X.
,
2019
, “
Numerical–Analytical Model for Transient Dynamics of Elastic-Plastic Plate Under Eccentric Low-Velocity Impact
,”
Appl. Math. Model.
,
70
, pp.
490
511
.
51.
Zhang
,
L.
,
Yin
,
X.
,
Yang
,
J.
,
Wang
,
H.
,
Deng
,
Q.
,
Yu
,
B.
,
Hao
,
Q.
, et al
,
2018
, “
Transient Impact Response Analysis of an Elastic–Plastic Beam
,”
Appl. Math. Model.
,
55
, pp.
616
636
.
52.
Big-Alabo
,
A.
,
Harrison
,
P.
, and
Cartmell
,
M. P.
,
2015
, “
Contact Model for Elastoplastic Analysis of Half-Space Indentation by a Spherical Impactor
,”
Comput. Struct.
,
151
, pp.
20
29
.
53.
Wang
,
H.
,
Yin
,
X.
,
Qi
,
X.
,
Deng
,
Q.
,
Yu
,
B.
, and
Hao
,
Q.
,
2017
, “
Experimental and Theoretical Analysis of the Elastic-Plastic Normal Repeated Impacts of a Sphere on a Beam
,”
Int. J. Solids Struct.
,
109
, pp.
131
142
.
54.
Vu-Quoc
,
L.
, and
Zhang
,
X.
,
1999
, “
An Elastoplastic Contact Force-Displacement Model in the Normal Direction: Displacement-Driven Version
,”
Proc. Math. Phys. Eng. Sci.
,
455
(
1991
), pp.
4013
4044
.
55.
Christoforou
,
A. P.
,
Yigit
,
A. S.
, and
Majeed
,
M.
,
2013
, “
Characterization and Scaling of Low Velocity Impact Response of Structures With Local Plastic Deformation: Implications for Design
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
125
135
.
56.
Ibrahim
,
A. H.
, and
Yigit
,
A. S.
,
2013
, “
Finite Element Modeling and Analysis of Low Velocity Impact on Composite Structures Subject to Progressive Damage and Delamination
,”
International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
.
57.
Hertz
,
H.
,
1882
, “
Ueber die Berührung Fester Elastischer Körper
,”
J. fur Reine Angew. Math.
,
92
, pp.
156
171
.
58.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Kadin
,
Y.
,
2005
, “
Unloading of an Elastic–Plastic Loaded Spherical Contact
,”
Int. J. Solids Struct.
,
42
(
13
), pp.
3716
3729
.
59.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2005
, “
Multiple Loading-Unloading of an Elastic-Plastic Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7119
7127
.
60.
Biplab
,
C.
, and
Prasanta
,
S.
,
2010
, “
Effect of Strain Hardening on Unloading of a Deformable Sphere Loaded Against a Rigid Flat-A Finite Element Study
,”
Int. J. Eng. Sci. Technol.
,
2
(
4
), pp.
225
233
.
61.
Chatterjee
,
B.
, and
Sahoo
,
P.
,
2013
, “
Finite-Element-Based Multiple Normal Loading-Unloading of an Elastic-Plastic Spherical Stick Contact
,”
ISRN Tribol.
,
2013
, pp.
1
13
.
62.
Chatterjee
,
B.
, and
Sahoo
,
P.
,
2013
, “
Finite Element Based Unloading of an Elastic Plastic Spherical Stick Contact for Varying Tangent Modulus and Hardening Rule
,”
Int. J. Surf. Eng. Interdiscip. Mater. Sci.
,
1
(
1
), pp.
13
32
.
63.
Shankar
,
S.
, and
Arjun
,
K. A.
,
2014
, “
Effect of Strain Hardening During Unloading for an Elastic-Plastic Hemisphere in Contact With a Rigid Flat
,”
Mech. Adv. Mater.
,
21
(
2
), pp.
139
144
.
64.
Song
,
Z.
, and
Komvopoulos
,
K.
,
2014
, “
An Elastic–Plastic Analysis of Spherical Indentation: Constitutive Equations for Single-Indentation Unloading and Development of Plasticity Due to Repeated Indentation
,”
Mech. Mater.
,
76
, pp.
93
101
.
65.
Zhao
,
J. H.
,
Nagao
,
S.
, and
Zhang
,
Z. L.
,
2012
, “
Loading and Unloading of a Spherical Contact: From Elastic to Elastic–Perfectly Plastic Materials
,”
Int. J. Mech. Sci.
,
56
(
1
), pp.
70
76
.
66.
Zhao
,
B.
,
Zhang
,
S.
,
Wang
,
Q. F.
,
Zhang
,
Q.
, and
Wang
,
P.
,
2015
, “
Loading and Unloading of a Power-Law Hardening Spherical Contact Under Stick Contact Condition
,”
Int. J. Mech. Sci.
,
94–95
, pp.
20
26
.
67.
Brake
,
M. R. W.
,
2015
, “
An Analytical Elastic Plastic Contact Model With Strain Hardening and Frictional Effects for Normal and Oblique Impacts
,”
Int. J. Solids Struct.
,
62
, pp.
104
123
.
68.
Biwa
,
S.
, and
Storåkers
,
B.
,
1995
, “
An Analysis of Fully Plastic Brinell Indentation
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1303
1333
.
69.
Taljat
,
B.
, and
Pharr
,
G. M.
,
2004
, “
Development of Pile-Up During Spherical Indentation of Elastic–Plastic Solids
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3891
3904
.
70.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
153
201
.
71.
Martin
,
C. L.
, and
Bouvard
,
D.
,
2004
, “
Isostatic Compaction of Bimodal Powder Mixtures and Composites
,”
Int. J. Mech. Sci.
,
46
(
6
), pp.
907
927
.
72.
Larsson
,
P. L.
, and
Olsson
,
E.
,
2015
, “
A Numerical Study of the Mechanical Behavior at Contact Between Particles of Dissimilar Elastic–Ideally Plastic Materials
,”
J. Phys. Chem. Solids
,
77
, pp.
92
100
.
73.
Chen
,
C.
,
Wahab
,
M. A.
,
Wang
,
Q.
, and
Yin
,
X.
,
2021
,
Unloading of Low Velocity Impact Between Elastic and Elastic-Plastic Bodies
,
Springer
,
Singapore
, pp.
47
66
.
74.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress–Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Technical Note, USA, pp.
1
28
.
75.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
76.
Bartier
,
O.
,
Hernot
,
X.
, and
Mauvoisin
,
G.
,
2010
, “
Theoretical and Experimental Analysis of Contact Radius for Spherical Indentation
,”
Mech. Mater.
,
42
(
6
), pp.
640
656
.
You do not currently have access to this content.