Abstract

Usually, rail materials are exactly affected by the erosion of windblown sand in the desert environment. For this reason, the influence of impact angle, particle velocity, and particle size on the erosion wear behavior of the U75V heat-treated rail steel, a material frequently employed in Chinese railways, were studied in this work. The results showed that, with increasing impact angle, the erosion rate increased between 15 deg and 45 deg, decreased between 45 deg and 75 deg, and then increased again between 75 deg and 90 deg. The highest erosion rate occurred at about 45 deg. When the particle velocity increased, the erosion rate increased approximately in a quadratic way. As the sand particle size increased, the erosion rate presented a decreasing trend. During the initial stage of erosion, shear craters, indentation craters, and ploughing craters were the main surface damage features. The shear craters predominated at the impact angle of 45 deg whereas the indentation craters predominated at 90 deg. During the steady-state of erosion, the rail damage was mainly composed of craters, platelets, and cracks. Both the length and depth of craters increased almost linearly with increasing particle velocity, whereas the increased rate of length was significantly higher than that of depth. The length and depth of craters increased with increasing particle size at 90 deg, whereas only the length increased with increasing particle size at 45 deg. The microstructure evolution and the formation mechanism of platelet at low impact angles were different from those at high impact angles. Platelet formation was the main erosion wear mechanism.

References

1.
Bruno
,
L.
,
Horvat
,
M.
, and
Raffaele
,
L.
,
2018
, “
Windblown Sand Along Railway Infrastructures: A Review of Challenges and Mitigation Measures
,”
J. Wind Eng. Ind. Aerodyn.
,
177
, pp.
340
365
. 10.1016/j.jweia.2018.04.021
2.
Railway Education and Training
,
2017
, “
Can the Train in the Desert Still Run When the Sandstorm Suddenly Comes?
https://www.sohu.com/a/206470749_753111
3.
Finnie
,
I.
,
1972
, “
Some Observations on the Erosion of Ductile Metals
,”
Wear
,
19
(
1
), pp.
81
90
. 10.1016/0043-1648(72)90444-9
4.
Jafari
,
A.
, and
Abbasi Hattani
,
R.
,
2020
, “
Investigation of Parameters Influencing Erosive Wear Using DEM
,”
Friction
,
8
(
1
), pp.
136
150
. 10.1007/s40544-018-0252-4
5.
Sundararajan
,
G.
, and
Manish
,
R.
,
1997
, “
Solid Particle Erosion Behaviour of Metallic Materials at Room and Elevated Temperatures
,”
Tribol. Int
,
30
(
5
), pp.
339
359
. 10.1016/S0301-679X(96)00064-3
6.
Levy
,
A. V.
,
1981
, “
The Solid Particle Erosion Behavior of Steel as a Function of Microstructure
,”
Wear
,
68
(
3
), pp.
269
287
. 10.1016/0043-1648(81)90177-0
7.
Foley
,
T.
, and
Levy
,
A.
,
1983
, “
The Erosion of Heat-Treated Steels
,”
Wear
,
91
(
1
), pp.
45
64
. 10.1016/0043-1648(83)90107-2
8.
McCabe
,
L. P.
,
Sargent
,
G. A.
, and
Conrad
,
H.
,
1985
, “
Effect of Microstructure on the Erosion of Steel by Solid Particles
,”
Wear
,
105
(
3
), pp.
257
277
. 10.1016/0043-1648(85)90072-9
9.
Levy
,
A. V.
,
1986
, “
The Platelet Mechanism of Erosion of Ductile Metals
,”
Wear
,
108
(
1
), pp.
1
21
. 10.1016/0043-1648(86)90085-2
10.
Aminul Islam
,
M.
,
Farhat
,
Z. N.
,
Ahmed
,
E. M.
, and
Alfantazi
,
A. M.
,
2013
, “
Erosion Enhanced Corrosion and Corrosion Enhanced Erosion of API X-70 Pipeline Steel
,”
Wear
,
302
(
1–2
), pp.
1592
1601
. 10.1016/j.wear.2013.01.041
11.
Biswas
,
S.
,
Cenna
,
A.
,
Williams
,
K.
, and
Jones
,
M.
,
2014
, “
Subsurface Behavior of Ductile Material by Particle Impacts and Its Influence on Wear Mechanism
,”
Procedia Eng.
,
90
, pp.
160
165
. 10.1016/j.proeng.2014.11.830
12.
Patel
,
M.
,
Patel
,
D.
,
Sekar
,
S.
,
Tailor
,
P. B.
, and
Ramana
,
P. V.
,
2016
, “
Study of Solid Particle Erosion Behaviour of SS 304 at Room Temperature
,”
Procedia Technol.
,
23
, pp.
288
295
. 10.1016/j.protcy.2016.03.029
13.
Islam
,
M. A.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(
1–2
), pp.
180
190
. 10.1016/j.wear.2014.01.005
14.
Özen
,
I.
, and
Gedikli
,
H.
,
2019
, “
Solid Particle Erosion on Shield Surface of a Helicopter Rotor Blade Using Computational Fluid Dynamics
,”
J. Aerosp. Eng.
,
32
(
1
), pp.
04018131.1
04018131.14
. 10.1061/(ASCE)AS.1943-5525.0000962
15.
Chowdhury
,
M. A.
,
Debnath
,
U. K.
,
Nuruzzaman
,
D. M.
, and
Islam
,
M. M.
,
2016
, “
Experimental Analysis of Aluminum Alloy Under Solid Particle Erosion Process
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
230
(
12
), pp.
1516
1541
. 10.1177/1350650116639466
16.
Yildiran
,
Y.
,
Avcu
,
E.
,
Sahin
,
A. E.
,
Fidan
,
S.
,
Yetistiren
,
H.
, and
Sinmazçelik
,
T.
,
2014
, “
Effect of Particle Impact Angle, Erodent Particle Size and Acceleration Pressure on the Solid Particle Erosion Behavior of 3003 Aluminum Alloy
,”
Acta Phys. Pol. A
,
125
(
2
), pp.
523
525
. 10.12693/APhysPolA.125.523
17.
Sahoo
,
R.
,
Mantry
,
S.
,
Sahoo
,
T. K.
,
Mishra
,
S.
, and
Jha
,
B. B.
,
2013
, “
Effect of Microstructural Variation on Erosion Wear Behavior of Ti-6Al-4V Alloy
,”
Tribol. Trans.
,
56
(
4
), pp.
555
560
. 10.1080/10402004.2013.767400
18.
Fidan
,
S.
,
Avcu
,
E.
,
Karakulak
,
E.
,
Yamanoglu
,
R.
,
Zeren
,
M.
, and
Sinmazcelik
,
T.
,
2013
, “
Effect of Heat Treatment on Erosive Wear Behaviour of Ti6Al4V Alloy
,”
Mater. Sci. Technol. (United Kingdom)
,
29
(
9
), pp.
1088
1094
. 10.1179/1743284713Y.0000000239
19.
Vashishtha
,
N.
,
Khatirkar
,
R. K.
, and
Sapate
,
S. G.
,
2017
, “
Tribological Behaviour of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2−25NiCr Coatings
,”
Tribol. Int.
,
105
, pp.
55
68
. 10.1016/j.triboint.2016.09.025
20.
Bagci
,
M.
, and
Imrek
,
H.
,
2011
, “
Solid Particle Erosion Behaviour of Glass Fibre Reinforced Boric Acid Filled Epoxy Resin Composites
,”
Tribol. Int.
,
44
(
12
), pp.
1704
1710
. 10.1016/j.triboint.2011.06.033
21.
Bagci
,
M.
,
2016
, “
Determination of Solid Particle Erosion with Taguchi Optimization Approach of Hybrid Composite Systems
,”
Tribol. Int.
,
94
, pp.
336
345
. 10.1016/j.triboint.2015.09.032
22.
Wensink
,
H.
, and
Elwenspoek
,
M. C.
,
2002
, “
A Closer Look at the Ductile-Brittle Transition in Solid Particle Erosion
,”
Wear
,
253
(
9–10
), pp.
1035
1043
. 10.1016/S0043-1648(02)00223-5
23.
Routbort
,
J. L.
, and
Scattergood
,
R. O.
,
1992
, “
Solid Particle Erosion of Ceramics and Ceramic Composites
,”
Key Eng. Mater
,
71
, pp.
23
50
. 10.4028/www.scientific.net/KEM.71.23
24.
Hao
,
Y.
,
Feng
,
Y.
, and
Fan
,
J.
,
2016
, “
Experimental Study Into Erosion Damage Mechanism of Concrete Materials in a Wind-Blown Sand Environment
,”
Constr. Build. Mater
,
111
, pp.
662
670
. 10.1016/j.conbuildmat.2016.02.137
25.
Sheldon
,
G. L.
,
1970
, “
Similarities and Differences in the Erosion Behavior of Materials
,”
ASME J. Fluids Eng.
,
92
(
3
), pp.
619
626
. 10.1115/1.3425086
26.
Tilly
,
G. P.
,
1969
, “
Sand Erosion of Metals and Plastics: A Brief Review
,”
Wear
,
14
(
4
), pp.
241
248
. 10.1016/0043-1648(69)90048-9
27.
Kleis
,
I.
,
1969
, “
Probleme Der Bestimmung Des Strahlverschleisses Bei Metallen
,”
Wear
,
13
(
3
), pp.
199
215
. 10.1016/0043-1648(69)90151-3
28.
ASTM Standard, Designation: G76-95 (2000)
. "
Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets
,"
100 Bar Harbor Drive, West Conshohocken, PA 19428-2959
, p.
1
5
.
29.
Ruff
,
A. W.
, and
Ives
,
L. K.
,
1975
, “
Measurement of Solid Particle Velocity in Erosive Wear
,”
Wear
,
35
(
1
), pp.
195
199
. 10.1016/0043-1648(75)90154-4
30.
Li
,
K.
,
Jiang
,
F.
,
Xue
,
C.
,
Yang
,
Y.
, and
Ge
,
S.
,
2011
, “
Characteristics of Gobi Sand-Drift Along South Xinjiang Railway
,”
J. Arid L. Resour. Environ.
,
25
(
5
), pp.
67
71
.
31.
Jiang
,
F. Q.
,
Li
,
Y.
,
Li
,
K. C.
,
Cheng
,
J. J.
,
Xue
,
C. X.
, and
Ge
,
S. C.
,
2010
, “
Study on Structural Characteristics of Gobi Wind Sand Flow in 100 Km Wind Area Along Lan-Xin Railway
,”
Tiedao Xuebao/Journal China Railw. Soc.
,
32
(
3
), pp.
105
110
.
32.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
. 10.1016/0043-1648(63)90003-6
33.
Lindsley
,
B. A.
, and
Marder
,
A. R.
,
1999
, “
The Effect of Velocity on the Solid Particle Erosion Rate of Alloys
,”
Wear
,
225–229
, pp.
510
516
. 10.1016/S0043-1648(99)00085-X
34.
Ou
,
G. F.
,
Ye
,
H. J.
,
Zheng
,
Z. J.
,
Jin
,
H. Z.
, and
Wang
,
C.
,
2016
, “
High-Speed Gas-Solid Two-Phase Flow Erosion of 1Cr9Mo Alloy
,”
Gongcheng Kexue Xuebao/Chinese J. Eng.
,
38
(
12
), pp.
1747
1754
.
35.
Algahtani
,
A.
,
Neville
,
A.
,
Shrestha
,
S.
, and
Liskiewicz
,
T.
,
2013
, “
Erosion Resistance of Surface Engineered 6000 Series Aluminum Alloy
,”
Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol.
,
227
(
11
), pp.
1204
1214
. 10.1177/1350650113485187
36.
Haider
,
G.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2017
, “
A Mechanistic Model for Stochastic Rebound of Solid Particles With Application to Erosion Predictions
,”
Wear
,
376–377
, pp.
615
624
. 10.1016/j.wear.2017.02.015
37.
Bellman
,
R.
, and
Levy
,
A.
,
1981
, “
Erosion Mechanism in Ductile Metals
,”
Wear
,
70
(
1
), pp.
1
27
. 10.1016/0043-1648(81)90268-4
38.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
. 10.1016/0043-1648(60)90055-7
39.
Tilly
,
G. P.
,
1973
, “
A Two Stage Mechanism of Ductile Erosion
,”
Wear
,
23
(
1
), pp.
87
96
. 10.1016/0043-1648(73)90044-6
40.
Levy
,
A. V.
,
1988
, “
The Erosion-Corrosion Behavior of Protective Coatings
,”
Surf. Coat. Technol.
,
36
(
1
), pp.
387
406
. 10.1016/0257-8972(88)90168-5
You do not currently have access to this content.