Abstract

The fretting wear behaviors of mooring chain steel 22MnCrNiMo specimens were evaluated in pure water and artificial seawater using a pin-on-flat configuration with 500-μm amplitude at room temperature for 2 h. Open-circuit potential tests and potentiodynamic anodic polarization were used to measure the alloy’s corrosion behaviors. Worn specimen surfaces were observed using scanning electron microscopy and wear volume loss determined using laser-scanning confocal microscopy. Comparative analyses of friction coefficient, wear volume loss, and worn surface morphologies were conducted. The results showed that the friction coefficients of 22MnCrNiMo friction pairs were in general smaller in seawater compared with that in pure water. Comparing contact stresses, sliding velocities had greater influence on tribocorrosion behavior of friction pairs in a marine environment. Moreover, wear volume loss of this steel in seawater was lower than that in pure water, indicating that corrosion had inhibitory effects on wear. With the increase of wear degree, the corrosion degree also increased, indicating that wear occurrence promoted corrosion. This also demonstrated a transformation of positive to negative interactions between corrosion and wear in the fretting corrosion and wear processes of this steel. The wear mechanism of the mooring chain steel 22MnCrNiMo was typically abrasion wear in pure water, whereas it was corrosion fatigue in seawater.

References

1.
Stemp
,
M.
,
Mischler
,
S.
, and
Landolt
,
D.
,
2003
, “
The Effect of Contact Configuration on the Tribocorrosion of Stainless Steel in Reciprocating Sliding Under Potentiostatic Control
,”
Corros. Sci.
,
45
(
3
), pp.
625
640
. 10.1016/S0010-938X(02)00136-1
2.
Zhang
,
X. M.
, and
Chen
,
W. P.
,
2015
, “
Review on Corrosion-Wear Resistance Performance of Materials in Molten Aluminum and Its Alloys
,”
Trans. Nonferrous Met. Soc. China
,
25
(
6
), pp.
1715
1731
. 10.1016/S1003-6326(15)63777-3
3.
Shan
,
L.
,
Zhang
,
Y. R.
,
Wang
,
Y. X.
,
Li
,
J. L.
,
Jiang
,
X.
, and
Chen
,
J. M.
,
2016
, “
Corrosion and Wear Behaviors of PVD CrN and CrSiN Coatings in Seawater
,”
Trans. Nonferrous Met. Soc. China
,
26
(
1
), pp.
175
184
. 10.1016/S1003-6326(16)64104-3
4.
Ye
,
Y. W.
,
Wang
,
Y. X.
,
Ma
,
X. L.
,
Zhang
,
D. W.
,
Wang
,
L. P.
, and
Li
,
X. G.
,
2017
, “
Tribocorrosion Behaviors of Multilayer PVD DLC Coated 304L Stainless Steel in Seawater
,”
Diam. Relat. Mater.
,
79
, pp.
70
78
. 10.1016/j.diamond.2017.09.002
5.
Bahaj
,
A. S.
,
2011
, “
Generating Electricity From the Oceans
,”
Renew. Sust. Energ. Rev.
,
15
(
7
), pp.
3399
3416
. 10.1016/j.rser.2011.04.032
6.
Guan
,
X. Y.
,
Wang
,
Y. X.
,
Xue
,
Q. J.
, and
Wang
,
L. P.
,
2015
, “
Toward High Load Bearing Capacity and Corrosion Resistance Cr/Cr2N Nano-Multilayer Coatings Against Seawater Attack
,”
Surf. Coat. Technol.
,
282
, pp.
78
85
. 10.1016/j.surfcoat.2015.10.016
7.
Neville
,
A.
, and
Hu
,
X.
,
2001
, “
Mechanical and Electrochemical Interactions During Liquid–Solid Impingement on High-Alloy Stainless Steels
,”
Wear
,
251
(
1−12
), pp.
1284
1294
. 10.1016/S0043-1648(01)00757-8
8.
Henry
,
P.
,
Takadoum
,
J.
, and
Berçot
,
P.
,
2009
, “
Tribocorrosion of 316L Stainless Steel and TA6V4 Alloy in H2SO4 Media
,”
Corros. Sci.
,
51
(
6
), pp.
1308
1314
. 10.1016/j.corsci.2009.03.015
9.
Chen
,
J.
, and
Yan
,
P. Y.
,
2012
, “
Tribocorrosion Behaviors of Ti–6Al–4V and Monel K500 Alloys Sliding Against 316 Stainless Steel in Artificial Seawater
,”
Trans. Nonferrous Met. Soc. China
,
22
(
6
), pp.
1356
1365
. 10.1016/S1003-6326(11)61326-5
10.
Barril
,
S.
,
Mischler
,
S.
, and
Landolt
,
D.
,
2004
, “
Influence of Fretting Regimes on the Tribocorrosion Behaviour of Ti6Al4V in 0.9 wt% Sodium Chloride Solution
,”
Wear
,
256
(
9−10
), pp.
963
972
. 10.1016/j.wear.2003.11.003
11.
Pejaković
,
V.
,
Totolin
,
V.
, and
Ripoll
,
M. R.
,
2018
, “
Tribocorrosion Behaviour of Ti6Al4V in Artificial Seawater at Low Contact Pressures
,”
Tribol. Int.
,
119
, pp.
55
65
. 10.1016/j.triboint.2017.10.025
12.
Panagopoulos
,
C. N.
,
Georgiou
,
E. P.
, and
Gavras
,
A. G.
,
2009
, “
Corrosion and Wear of 6082 Aluminum Alloy
,”
Tribol. Int.
,
42
(
6
), pp.
886
889
. 10.1016/j.triboint.2008.12.002
13.
Ding
,
H. Y.
,
Zhou
,
G. H.
,
Dai
,
Z. D.
,
Bu
,
Y. F.
, and
Jiang
,
T. Y.
,
2009
, “
Corrosion Wear Behaviors of 2024Al in Artificial Rainwater and Seawater at Fretting Contact
,”
Wear
,
267
(
1–4
), pp.
292
298
. 10.1016/j.wear.2008.11.031
14.
Vitry
,
V.
,
Sens
,
S.
,
Kanta
,
A. F.
, and
Delaunois
,
F.
,
2012
, “
Wear and Corrosion Resistance of Heat Treated and As-Plated Duplex NiP/NiB Coatings on 2024 Aluminum Alloys
,”
Surf. Coat. Technol.
,
206
(
16
), pp.
3421
3427
. 10.1016/j.surfcoat.2012.01.049
15.
Steenkiste
,
D. V.
,
Plasschaert
,
S.
,
Baets
,
P. D.
,
Pauw
,
J. D.
,
Delgado
,
Y. P.
, and
Sukumaran
,
J.
,
2011
, “
Abrasive Wear of Link Chains
,”
Sustain. Constr. Des.
,
2
(
3
), pp.
388
396
.
16.
De Pauw
,
J.
,
De Baets
,
P.
,
Delgado
,
Y. P.
,
Sukumaran
,
J.
, and
Ost
,
W.
,
2013
, “
A Full Scale Test Rig for Assessment of Abrasive Wear of Shackle Chains
,”
Wear
,
302
(
1–2
), pp.
1017
1025
. 10.1016/j.wear.2012.12.044
17.
Wieczorek
,
A. N.
, and
Polis
,
W.
,
2015
, “
Operation-Oriented Method for Testing the Abrasive Wear of Mining Chain Wheels in the Conditions of the Combined Action of Destructive Factors
,”
Manage. Syst. Production Eng.
,
3
(
19
), pp.
175
178
.
18.
López-Ortega
,
A.
,
Bayón
,
R.
,
Arana
,
J. L.
,
Arredondo
,
A.
, and
Igartua
,
A.
,
2018
, “
Influence of Temperature on the Corrosion and Tribocorrosion Behaviour of High-Strength Low-Alloy Steels Used in Offshore Applications
,”
Tribol. Int.
,
121
, pp.
341
352
. 10.1016/j.triboint.2018.01.049
19.
Melchers
,
R. E.
,
Moan
,
T.
, and
Gao
,
Z.
,
2007
, “
Corrosion of Working Chains Continuously Immersed in Seawater
,”
J. Mar. Sci. Technol.
,
12
(
2
), pp.
102
110
. 10.1007/s00773-006-0227-4
20.
López
,
A.
,
Bayón
,
R.
,
Pagano
,
F.
,
Igartua
,
A.
,
Arredondo
,
A.
,
Arana
,
J. L.
, and
González
,
J. J.
,
2015
, “
Tribocorrosion Behaviour of Mooring High Strength Low Alloy Steels in Synthetic Seawater
,”
Wear
,
338−339
, pp.
1
10
. 10.1016/j.wear.2015.05.004
21.
Su
,
J.
,
Liu
,
G.
, and
Sun
,
J. J.
,
2015
, “
Research on Tests and Numerical Analysis of Corrosion and Wear Damage of Mooring Chain Steel 22MnCrNiMo
,”
Chin. J. Comput. Mech.
,
32
(
1
), pp.
113
117
. (
in Chinese
).
22.
Yuan
,
C.
,
Guo
,
Z.
,
Tao
,
W.
,
Dong
,
C.
, and
Bai
,
X.
,
2017
, “
Effects of Different Grain Sized Sands on Wear Behaviours of NBR/Casting Copper Alloys
,”
Wear
,
384–485
, pp.
185
191
. 10.1016/j.wear.2017.02.019
23.
Ding
,
H. Y.
,
Dai
,
Z. D.
,
Zhou
,
F.
, and
Zhou
,
G. H.
,
2007
, “
Sliding Friction and Wear Behavior of TC11 in Aqueous Condition
,”
Wear
,
263
(
1
), pp.
117
124
. 10.1016/j.wear.2007.01.106
24.
Hanawa
,
T.
,
Asami
,
K.
, and
Asaoka
,
K.
,
1998
, “
Repassivation of Titanium and Surface Oxide Film Regeneration in Simulated Bioliquid
,”
J. Biomed. Mater. Res.
,
40
(
4
), pp.
530
538
. 10.1002/(SICI)1097-4636(19980615)40:4<530::AID-JBM3>3.0.CO;2-G
25.
Sun
,
J. J.
,
2014
,
The Research of Corrosive Wear Damage of Marine Engineering Chain Link
,
Master Thesis
,
Dalian University of Technology
,
Dalian, Liaoning, China
.
26.
Zhang
,
T. C.
,
Jiang
,
X. X.
, and
Li
,
S. Z.
,
1996
, “
Acceleration of Corrosive Wear of Duplex Stainless Steel by Chloride in 69% H3PO4 Solution
,”
Wear
,
199
(
2
), pp.
253
259
. 10.1016/0043-1648(96)06982-7
You do not currently have access to this content.