Abstract

In this research work, graphite flake has been used as an additive in magnetorheological (MR) fluid to improve its thermal and tribological performance. MR fluids with varying amounts of graphite flakes (0.5, 1, 2, 3, 4, and 5 wt%) are prepared to show effective thermal and tribological performance. A test rig is developed with a DC motor, torque sensor, and MR clutch operated in a shear mode to test the torque transmission. Results show the lubrication effects of graphite flakes in the MR fluid. Torque transmission is improved in on-state and off-state using graphite flakes-based MR fluid as compared with conventional MR fluid. Heating of the MR clutch is also reduced with the graphite flakes-based MR fluid. Wear marks and damages are decreased significantly with the increased amount of graphite flakes as found in surface roughness tests. Scanning electron microscopy and energy-dispersive spectroscopy are used to characterize the worn surfaces. This research provides information about the effectiveness of graphite flakes in the MR clutch to improve the device’s performance.

References

1.
Gupta
,
M. K.
, and
Bijwe
,
J.
,
2020
, “
A Complex Interdependence of Dispersant in Nano-Suspensions With Varying Amount of Graphite Particles on Its Stability and Tribological Performance
,”
Tribol. Int.
,
142
, p.
105968
.
2.
Song
,
K. H.
,
Park
,
B. J.
, and
Choi
,
H. J.
,
2009
, “
Effect of Magnetic Nanoparticle Additive on Characteristics of Magnetorheological Fluid
,”
IEEE Trans. Magn.
,
45
(
10
), pp.
4045
4048
.
3.
Huang
,
H. D.
,
Tu
,
J. P.
,
Gan
,
L. P.
, and
Li
,
C. Z.
,
2006
, “
An Investigation on Tribological Properties of Graphite Nanosheets as Oil Additive
,”
Wear
,
261
(
2
), pp.
140
144
.
4.
Singh
,
H.
, and
Bhowmick
,
H.
,
2018
, “
Tribological Behaviour of Hybrid AMMC Sliding Against Steel and Cast Iron Under MWCNT-Oil Lubrication
,”
Tribol. Int.
,
127
, pp.
509
519
.
5.
Huang
,
J.
,
Tan
,
J.
,
Fang
,
H.
,
Gong
,
F.
, and
Wang
,
J.
,
2019
, “
Tribological and Wear Performances of Graphene-Oil Nanofluid Under Industrial High-Speed Rotation
,”
Tribol. Int.
,
135
, pp.
112
120
.
6.
Chen
,
B.
,
Bi
,
Q.
,
Yang
,
J.
,
Xia
,
Y.
, and
Hao
,
J.
,
2008
, “
Tribological Properties of Solid Lubricants (Graphite, h-BN) for Cu-Based P/M Friction Composites
,”
Tribol. Int.
,
41
(
12
), pp.
1145
1152
.
7.
Rajendhran
,
N.
,
Palanisamy
,
S.
,
Periyasamy
,
P.
, and
Venkatachalam
,
R.
,
2018
, “
Enhancing of the Tribological Characteristics of the Lubricant Oils Using Ni-Promoted MoS2 Nanosheets as Nano-Additives
,”
Tribol. Int.
,
118
, pp.
314
328
.
8.
Kumar
,
N.
,
Saini
,
V.
, and
Bijwe
,
J.
,
2020
, “
Tribological Investigations of Nano and Micro-Sized Graphite Particles as an Additive in Lithium-Based Grease
,”
Tribol. Lett.
,
68
(
4
), pp.
1
13
.
9.
Diep
,
B. T.
,
Hiep
L. D.
,
Nguyen
,
Q. H.
,
Choi
,
S. B.
, and
Kim
,
J. H.
,
2020
, “
Design and Experimental Evaluation of a Novel Bidirectional Magnetorheological Actuator
,”
Smart Mater. Struct.
,
29
(
11
), p.
117001
.
10.
Vicente
,
J. D.
,
Klingenberg
,
D. J.
, and
Hidalgo-Alvarez
,
R.
,
2011
, “
Magnetorheological Fluids: A Review
,”
Soft Matter
,
7
(
8
), pp.
3701
3710
.
11.
Park
,
B. J.
,
Song
,
K. H.
, and
Choi
,
H. J.
,
2009
, “
Magnetic Carbonyl Iron Nanoparticle Based Magnetorheological Suspension and Its Characteristics
,”
Mater. Lett.
,
63
(
15
), pp.
1350
1352
.
12.
Nakano
,
M.
,
Yang
,
J.
,
Sun
,
S.
,
Totsuka
,
A.
, and
Fukukita
,
A.
,
2020
, “
Development and Damping Properties of a Seismic Linear Motion Damper With MR Fluid Porous Composite Rotary Brake
,”
Smart Mater. Struct.
,
29
(
11
), p.
115043
.
13.
Aruna
,
M. N.
,
Rahman
,
M. R.
,
Joladarashi
,
S.
, and
Kumar
,
H.
,
2019
, “
Influence of Additives on the Synthesis of Carbonyl Iron Suspension on Rheological and Sedimentation Properties of Magnetorheological (MR) Fluids
,”
Mater. Res. Exp.
,
6
(
8
), p.
086105
.
14.
Han
,
W. J.
,
An
,
J. S.
, and
Choi
,
H. J.
,
2020
, “
Enhanced Magnetorheological Characteristics of Hollow Magnetite Nanoparticle-Carbonyl Iron Microsphere Suspension
,”
Smart Mater. Struct.
,
29
(
5
), p.
055022
.
15.
Ashtiani
,
M.
,
Hashemabadi
,
S. H.
, and
Ghaffari
,
A.
,
2015
, “
A Review on the Magnetorheological Fluid Preparation and Stabilization
,”
J. Magn. Magn. Mater.
,
374
, pp.
716
730
.
16.
Kim
,
M. H.
,
Choi
,
K.
,
Nam
,
J. D.
, and
Choi
,
H. J.
,
2017
, “
Enhanced Magnetorheological Response of Magnetic Chromium Dioxide Nanoparticle Added Carbonyl Iron Suspension
,”
Smart Mater. Struct.
,
26
(
9
), p.
095006
.
17.
Rahim
,
M. S. A.
,
Ismail
,
I.
,
Choi
,
S. B.
,
Azmi
,
W. H.
, and
Aqida
,
S. N.
,
2017
, “
Thermal Conductivity Enhancement and Sedimentation Reduction of Magnetorheological Fluids With Nano-Sized Cu and Al Additives
,”
Smart Mater. Struct.
,
26
(
11
), p.
115009
.
18.
Sarkar
,
C.
, and
Hirani
,
H.
,
2015
, “
Synthesis and Characterisation of Nano Silver Particle-Based Magnetorheological Fluids for Brakes
,”
Def. Sci. J.
,
65
(
3
), pp.
252
258
.
19.
Zhang
,
W. L.
, and
Choi
,
H. J.
,
2014
, “
Graphene Oxide Based Smart Fluids
,”
Soft Matter
,
10
(
35
), pp.
6601
6608
.
20.
Chen
,
K.
,
Zhang
,
W. L.
,
Shan
,
L.
,
Zhang
,
X.
,
Meng
,
Y.
,
Choi
,
H. J.
, and
Tian
,
Y.
,
2014
, “
Magnetorheology of Suspensions Based on Graphene Oxide Coated or Added Carbonyl Iron Microspheres and Sunflower Oil
,”
J. Appl. Phys.
,
116
(
15
), p.
153508
.
21.
Manzoor
,
M. T.
,
Kim
,
J. E.
,
Jung
,
J. H.
,
Han
,
C.
,
Choi
,
S. B.
, and
Oh
,
I. K.
,
2018
, “
Two-Dimensional rGO-MoS2 Hybrid Additives for High-Performance Magnetorheological Fluid
,”
Sci. Rep.
,
8
(
1
), pp.
1
9
.
22.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2020
, “
Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and Its Rheology
,”
IEEE Trans. Magn.
,
56
(
5
), pp.
1
10
.
23.
Song
,
W. L.
,
Choi
,
S. B.
,
Choi
,
J. Y.
, and
Lee
,
C. H.
,
2011
, “
Wear and Friction Characteristics of Magnetorheological Fluid Under Magnetic Field Activation
,”
Tribol. Trans.
,
54
(
4
), pp.
616
624
.
24.
Iglesias
,
G. R.
,
Ruiz-Morón
,
L. F.
,
Durán
,
J. D. G.
, and
Delgado
,
A. V.
,
2015
, “
Dynamic and Wear Study of an Extremely Bidisperse Magnetorheological Fluid
,”
Smart Mater. Struct.
,
24
(
12
), p.
127001
.
25.
Zhang
,
Q.
,
Liu
,
X.
,
Ren
,
Y.
,
Wang
,
L.
, and
Hu
,
Y.
,
2016
, “
Effect of Particle Size on the Wear Property of Magnetorheological Fluid
,”
Adv. Mater. Sci. Eng.
,
2016
, p.
7
. http://dx.doi.org/10.1155/2016/4740986
26.
Hu
,
Z. D.
,
Yan
,
H.
,
Qiu
,
H. Z.
,
Zhang
,
P.
, and
Liu
,
Q.
,
2012
, “
Friction and Wear of Magnetorheological Fluid Under Magnetic Field
,”
Wear
,
278
, pp.
48
52
.
27.
Song
,
W.
,
Wang
,
S.
,
Choi
,
S. B.
,
Wang
,
N.
, and
Xiu
,
S.
,
2019
, “
Thermal and Tribological Characteristics of a Disc-Type Magnetorheological Brake Operated by the Shear Mode
,”
J. Intell. Mater. Syst. Struct.
,
30
(
5
), pp.
722
733
.
28.
Olabi
,
A. G.
, and
Grunwald
,
A.
,
2007
, “
Design and Application of Magneto-Rheological Fluid
,”
Mater. Des.
,
28
(
10
), pp.
2658
2664
.
29.
Kim
,
W. H.
,
Park
,
J. H.
,
Park
,
J.
,
Kim
,
G. W.
,
Lee
,
Y. S.
, and
Choi
,
S. B.
,
2018
, “
Comparative Study on Wear Characteristics Between Flow Mode and Shear Mode Magnetorheological Dampers
,”
Tribol. Trans.
,
61
(
3
), pp.
459
473
.
30.
Sung
,
K. G.
,
Choi
,
S. B.
,
Lee
,
H. G.
,
Min
,
K. W.
, and
Lee
,
S. H.
,
2005
, “
Performance Comparison of MR Dampers With Three Different Working Modes: Shear, Flow and Mixed Mode
,”
Int. J. Mod. Phys. B
,
19
(
07n09
), pp.
1556
1562
.
31.
Farjoud
,
A.
,
Cavery
,
R.
,
Ahmadian
,
M.
, and
Craft
,
M.
,
2009
, “
Magneto-Rheological Fluid Behavior in Squeeze Mode
,”
Smart Mater. Struct.
,
18
(
9
), p.
095001
.
32.
Wang
,
D.
, and
Hou
,
Y.
,
2012
, “
Design and Experimental Evaluation of a Multidisk Magnetorheological Fluid Actuator
,”
J. Intell. Mater. Syst. Struct.
,
24
(
5
), pp.
640
650
.
33.
Choi
,
S. B.
,
2012
,
Magnetorheological Fluid Technology: Applications in Vehicle Systems
,
CRC Press
,
Boca Raton, FL
.
34.
Sarkar
,
C.
, and
Hirani
,
H.
,
2013
, “
Theoretical and Experimental Studies on a Magnetorheological Brake Operating Under Compression Plus Shear Mode
,”
Smart Mater. Struct.
,
22
(
11
), p.
115032
.
35.
Ciocanel
,
C.
,
Elahinia
,
M. H.
,
Molyet
,
K. E.
, and
Naganathan
,
G. N.
,
2008
, “
Design Analysis and Control of a Magnetorheological Fluid Based Torque Transfer Device
,”
Int. J. Fluid Power
,
9
(
3
), pp.
19
24
.
36.
Noria Corporation Machinery Lubrication
. https://www.machinerylubrication.com/Read/29452/using-labyrinth-seals, Accessed October 20, 2020.
37.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2020
, “
Experimental and Numerical Study of Magnetorheological Clutch With Sealing at Larger Radius Disc
,”
Def. Sci. J.
,
70
(
6
), pp.
575
582
.
38.
Tian
,
T. F.
,
Li
,
W. H.
,
Alici
,
G.
,
Du
,
H.
, and
Deng
,
Y. M.
,
2011
, “
Microstructure and Magnetorheology of Graphite-Based MR Elastomers
,”
Rheol. Acta
,
50
(
9–10
), pp.
825
836
.
39.
Pang
,
H.
,
Xuan
,
S.
,
Liu
,
T.
, and
Gong
,
X.
,
2015
, “
Magnetic Field Dependent Electro-Conductivity of the Graphite Doped Magnetorheological Plastomers
,”
Soft Matter
,
11
(
34
), pp.
6893
6902
.
40.
Ulicny
,
J. C.
,
Snavely
,
K. S.
,
Golden
,
M. A.
, and
Klingenberg
,
D. J.
,
2010
, “
Enhancing Magnetorheology With Nonmagnetizable Particles
,”
Appl. Phys. Lett.
,
96
(
23
), p.
231903
.
41.
Wang
,
N.
,
Liu
,
X.
,
Krolczyk
,
G.
,
Li
,
Z.
, and
Li
,
W.
,
2019
, “
Effect of Temperature on the Transmission Characteristics of High-Torque Magnetorheological Brakes
,”
Smart Mater. Struct.
,
28
(
5
), p.
057002
.
42.
Sarkar
,
C.
, and
Hirani
,
H.
,
2015
, “
Synthesis and Characterization of Nano-Copper-Powder Based Magnetorheological Fluids for Brake
,”
Int. J. Eng. Sci. Technol.
,
4
(
2
), pp.
76
82
.
43.
Cherkasova
,
A. S.
, and
Shan
,
J. W.
,
2008
, “
Particle Aspect-Ratio Effects on the Thermal Conductivity of Micro- and Nanoparticle Suspensions
,”
ASME J. Heat. Transf.
,
130
(
8
), p.
082406
.
44.
Ozerinç
,
S.
,
Kakaç
,
S.
, and
Yazıcıoglu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.
45.
Kang
,
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
,
2006
, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
,
19
(
3
), pp.
181
191
.
46.
Iyahraja
,
S.
, and
Rajadurai
,
J. S.
,
2015
, “
Study of Thermal Conductivity Enhancement of Aqueous Suspensions Containing Silver Nanoparticles
,”
AIP Advanc.
,
5
(
5
), p.
057103
.
47.
Maugin
,
G. A.
,
1999
,
The Thermomechanics of Nonlinear Irreversible Behaviours
, Vol.
27
,
World Scientific
,
Paris
.
48.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2021
, “
Investigation of Different Groove Profile Effects on Torque Transmission in Shear Mode Magnetorheological Clutch: Numerical Simulation and Experimental Study
,”
ASME J. Tribol.
,
143
(
9
), p.
091801
.
49.
Khatekar
,
N. V.
, and
Pawade
,
R. S.
,
2019
, “
Analysis and Modeling of Surface Characteristics in Electrophoretic Deposition–Assisted Internal Polishing of AISI 304 Steel
,”
Int. J. Adv. Manuf. Tech.
,
104
(
5–8
), pp.
3083
3094
.
You do not currently have access to this content.