Abstract

Gas foil bearings (GFBs) are a key enabling technology for high-speed turbomachinery. The manufacturing of GFBs relies mainly on sheet metal forming techniques in order to conceive the compliant structure (e.g., bump foil) and the top foil. Such techniques require the development of a special know-how and most importantly, limit the design creativity to what is manufacturable using sheet metal forming. Additive manufacturing (AM) is a disruptive technology in prototyping and fabrication. This paper accesses the feasibility of AM in the fabrication of GFBs using selective laser melting (SLM) technology. A stainless steel GFB is 3D-printed in one piece, including the sleeve, the bump, and top foils. The bearing is assessed geometrically and statically before being tested on a gas bearing test rig, where it supported a ø40 mm rotor (m = 2 kg). The bearing performed similar to a conventional GFB, showing rotordynamically stable and repeatable operation up to 37.5 krpm. Such result highlights the potentials of AM as a viable alternative for foil bearing manufacturing.

References

1.
Agrawal
,
G. L.
,
1997
, “
Foil Air/Gas Bearing Technology—An Overview
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, American Society of Mechanical Engineers, p. V001T04A006.
2.
DellaCorte
,
C.
, and
Bruckner
,
R. J.
,
2011
, “
Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042502
. 10.1115/1.4002271
3.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
Tribol. Trans.
,
51
(
3
), pp.
254
264
. 10.1080/10402000701772579
4.
Dykas
,
B.
,
Bruckner
,
R.
,
DellaCorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2008
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012301
. 10.1115/1.2966418
5.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
On the Manufacturing of Compliant Foil Bearings
,”
J. Manuf. Process.
,
25
, pp.
357
368
. 10.1016/j.jmapro.2016.12.021
6.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
Comparative Evaluation of Foil Bearings With Different Compliant Structures for Improved Manufacturability
,”
ASME. Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
, p. V07AT34A014.
7.
Cima
,
M.
,
Sachs
,
E.
,
Fan
,
T.
,
Bredt
,
J. F.
,
Michaels
,
S. P.
,
Khanuja
,
S.
,
Lauder
,
A.
,
Lee
,
S.-J. J.
,
Brancazio
,
D.
,
Curodeau
,
A.
, and
Tuerck
,
H.
,
1995
, “
Three-Dimensional Printing Techniques
.” U.S. Patent, US005387380A.
8.
Meiners
,
W.
,
Wissenbach
,
K.
, and
Gasser
,
A.
,
1998
, “
Shaped Body Especially Prototype or Replacement Part Production
.” German Patent, DE19649865C1.
9.
Prater
,
T.
,
Werkheiser
,
N.
,
Ledbetter
,
F.
,
Timucin
,
D.
,
Wheeler
,
K.
, and
Snyder
,
M.
,
2018
, “
3D Printing in Zero G Technology Demonstration Mission: Complete Experimental Results and Summary of Related Material Modeling Efforts
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
391
417
. 10.1007/s00170-018-2827-7
10.
Werkheiser
,
M. J.
,
Dunn
,
J.
,
Snyder
,
M. P.
,
Edmunson
,
J.
,
Cooper
,
K.
, and
Johnston
,
M. M.
,
2014
, “
3D Printing In Zero-G ISS Technology Demonstration
,”
AIAA SPACE 2014 Conference and Exposition
,
San Diego, CA
,
Aug. 4–7
.
11.
Owens
,
A.
,
Do
,
S.
,
Kurtz
,
A.
, and
Weck
,
O. d.
,
2015
, “
Benefits of Additive Manufacturing for Human Exploration of Mars
,”
48th International Conference on Environmental Systems
,
Bellevue, WA
,
July 12–16
.
12.
Ruscitto
,
D.
,
McCormick
,
J.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance. NASA CR 135368
,” Natl. Aeronaut. Space Adm. Cleveland, OH.
13.
Fatu
,
A.
, and
Arghir
,
M.
,
2018
, “
Numerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041506
. 10.1115/1.4038042
14.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2020
, “
Pressure Profile Measurements Within the Gas Film of Journal Foil Bearings Using an Instrumented Rotor With Telemetry
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031013
. 10.1115/1.4044798
15.
Rubio
,
D.
, and
San Andrés
,
L.
,
2004
, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
653
660
. 10.1115/1.2056047
16.
Vayssette
,
B.
,
Saintier
,
N.
,
Brugger
,
C.
,
Elmay
,
M.
, and
Pessard
,
E.
,
2018
, “
Surface Roughness of Ti-6Al-4V Parts Obtained by SLM and EBM: Effect on the High Cycle Fatigue Life
,”
Proc. Eng.
,
213
, pp.
89
97
. 10.1016/j.proeng.2018.02.010
17.
Yang
,
T.
,
Liu
,
T.
,
Liao
,
W.
,
MacDonald
,
E.
,
Wei
,
H.
,
Chen
,
X.
, and
Jiang
,
L.
,
2019
, “
The Influence of Process Parameters on Vertical Surface Roughness of the AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
266
, pp.
26
36
. 10.1016/j.jmatprotec.2018.10.015
18.
Yu
,
W.
,
Sing
,
S. L.
,
Chua
,
C. K.
, and
Tian
,
X.
,
2019
, “
Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
792
, pp.
574
581
. 10.1016/j.jallcom.2019.04.017
19.
Saprykin
,
A. A.
,
Saprykina
,
N. A.
, and
Saprykin
,
A. A.
,
2018
, “
Analysis and Prediction of Copper Surface Roughness Obtained by Selective Laser Melting
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
441
, p.
012044
. 10.1088/1757-899X/441/1/012044
20.
Bernevig-Sava
,
M. A.
,
Stamate
,
C.
,
Lohan
,
N.-M.
,
Baciu
,
A. M.
,
Postolache
,
I.
,
Baciu
,
C.
, and
Baciu
,
E.-R.
,
2019
, “
Considerations on the Surface Roughness of SLM Processed Metal Parts and the Effects of Subsequent Sandblasting
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
572
, p.
012071
. 10.1088/1757-899X/572/1/012071
21.
Alghamdi
,
A.
,
Downing
,
D.
,
McMillan
,
M.
,
Brandt
,
M.
,
Qian
,
M.
, and
Leary
,
M.
,
2019
, “
Experimental and Numerical Assessment of Surface Roughness for Ti6Al4V Lattice Elements in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
105
(
1–4
), pp.
1275
1293
. 10.1007/s00170-019-04092-4
You do not currently have access to this content.